Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gavvala, Jay"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Epileptic seizure prediction using spectral width of the covariance matrix
    (IOP Publishing, 2022) EPMoghaddam, Dorsa; Sheth, Sameer A.; Haneef, Zulfi; Gavvala, Jay; Aazhang, Behnaam
    Objective. Epilepsy is a common neurological disorder in which patients suffer from sudden and unpredictable seizures. Seizures are caused by excessive and abnormal neuronal activity. Different methods have been employed to investigate electroencephalogram (EEG) data in patients with epilepsy. This paper introduces a simple yet accurate array-based method to study and predict seizures. Approach. We use the CHB-MIT dataset (all 24 cases), which includes scalp EEG recordings. The proposed method is based on the random matrix theory. After applying wavelet decomposition to denoise the data, we analyze the spatial coherence of the epileptic recordings by looking at the width of the covariance matrix eigenvalue distribution at different time and frequency bins. Main results. We train patient-specific support vector machine classifiers to distinguish between interictal and preictal data with high performance and a false prediction rate as low as 0.09 h−1. The proposed technique achieves an average accuracy, specificity, sensitivity, and area under the curve of 99.05%, 93.56%, 99.09%, and 0.99, respectively. Significance. Our proposed method outperforms state-of-the-art works in terms of sensitivity while maintaining a low false prediction rate. Also, in contrast to neural networks, which may achieve high performance, this work provides high sensitivity without compromising interpretability.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892