Browsing by Author "Gangoli, Varun S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Facile Graphene Oxide Preparation by Microwave-Assisted Acid Method(Sociedade Brasileira de Química, 2015) Viana, Marcelo M.; Lima, Meiriane C.F.S.; Forsythe, Jerimiah C.; Gangoli, Varun S.; Cho, Minjung; Cheng, Yinhong; Silva, Glaura G.; Wong, Michael S.; Caliman, ViniciusFew-layered graphene oxide (GO) was prepared using a fast and energy-saving method by microwave-assisted acid technique. The oxygenated groups existing on the GO surface were determined using UV-Vis, X-ray photoelectron and Fourier-transform infrared spectroscopies. An oxygenated group percentage of 30% in mass for the GO was observed by thermogravimetric analysis. The reduced few-layered graphene oxide (rGO) film annealed at 110 °C deposited onto a silicon/silica wafer showed expanded graphite-like structure with 0.70 nm between the rGO sheets, as determined by X-ray diffraction. This rGO film exhibited a relatively high electrical conductivity value of 7.36 × 102 S m-1 confirming the good restoration of the π-conjugated system. The prepared GO sample exhibited good stability in water from pH 4 to 12, as determined by its zeta potential, and contained 5 to 9 layers, as determined by atomic force microscopy (AFM) and transmission electron microscopy (TEM).Item The autophagic response to polystyrene nanoparticles is mediated by transcription factor EB and depends on surface charge(BioMed Central, 2015) Song, Wensi; Popp, Lauren; Yang, Justin; Kumar, Ayushi; Gangoli, Varun S.; Segatori, LauraBackground: A number of engineered nanoparticles induce autophagy, the main catabolic pathway that regulates bulk degradation of cytoplasmic material by the lysosomes. Depending on the specific physico-chemical properties of the nanomaterial, however, nanoparticle-induced autophagy may have different effects on cell physiology, ranging from enhanced autophagic degradation to blockage of autophagic flux. To investigate the molecular mechanisms underlying the impact of nanoparticle charge on the nature of the autophagic response, we tested polystyrene nanoparticles (50 nm) with neutral, anionic, and cationic surface charges. Results: We found all polystyrene nanoparticles investigated in this study to activate autophagy. We showed that internalization of polystyrene nanoparticles results in activation of the transcription factor EB, a master regulator of autophagy and lysosome biogenesis. Autophagic clearance, however, was observed to depend specifically on the charge of the nanoparticles. Particularly, we found that the autophagic response to polystyrene nanoparticles presenting a neutral or anionic surface involves enhanced clearance of autophagic cargo. Cell exposure to polystyrene nanoparticles presenting a cationic surface, on the other hand, results in transcriptional upregulation of the pathway, but also causes lysosomal dysfunction, ultimately resulting in blockage of autophagic flux. Conclusions: This study furthers our understanding of the molecular mechanisms that regulate the autophagic response to nanoparticles, thus contributing essential design criteria for engineering benign nanomaterials.