Browsing by Author "Fuller, Clifton D."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Artificial intelligence uncertainty quantification in radiotherapy applications − A scoping review(Elsevier, 2024) Wahid, Kareem A.; Kaffey, Zaphanlene Y.; Farris, David P.; Humbert-Vidan, Laia; Moreno, Amy C.; Rasmussen, Mathis; Ren, Jintao; Naser, Mohamed A.; Netherton, Tucker J.; Korreman, Stine; Balakrishnan, Guha; Fuller, Clifton D.; Fuentes, David; Dohopolski, Michael J.Background/purpose The use of artificial intelligence (AI) in radiotherapy (RT) is expanding rapidly. However, there exists a notable lack of clinician trust in AI models, underscoring the need for effective uncertainty quantification (UQ) methods. The purpose of this study was to scope existing literature related to UQ in RT, identify areas of improvement, and determine future directions. Methods We followed the PRISMA-ScR scoping review reporting guidelines. We utilized the population (human cancer patients), concept (utilization of AI UQ), context (radiotherapy applications) framework to structure our search and screening process. We conducted a systematic search spanning seven databases, supplemented by manual curation, up to January 2024. Our search yielded a total of 8980 articles for initial review. Manuscript screening and data extraction was performed in Covidence. Data extraction categories included general study characteristics, RT characteristics, AI characteristics, and UQ characteristics. Results We identified 56 articles published from 2015 to 2024. 10 domains of RT applications were represented; most studies evaluated auto-contouring (50 %), followed by image-synthesis (13 %), and multiple applications simultaneously (11 %). 12 disease sites were represented, with head and neck cancer being the most common disease site independent of application space (32 %). Imaging data was used in 91 % of studies, while only 13 % incorporated RT dose information. Most studies focused on failure detection as the main application of UQ (60 %), with Monte Carlo dropout being the most commonly implemented UQ method (32 %) followed by ensembling (16 %). 55 % of studies did not share code or datasets. Conclusion Our review revealed a lack of diversity in UQ for RT applications beyond auto-contouring. Moreover, we identified a clear need to study additional UQ methods, such as conformal prediction. Our results may incentivize the development of guidelines for reporting and implementation of UQ in RT.Item Cluster-Based Toxicity Estimation of Osteoradionecrosis Via Unsupervised Machine Learning: Moving Beyond Single Dose-Parameter Normal Tissue Complication Probability by Using Whole Dose-Volume Histograms for Cohort Risk Stratification(Elsevier, 2024) Hosseinian, Seyedmohammadhossein; Hemmati, Mehdi; Dede, Cem; Salzillo, Travis C.; van Dijk, Lisanne V.; Mohamed, Abdallah S. R.; Lai, Stephen Y.; Schaefer, Andrew J.; Fuller, Clifton D.Purpose Given the limitations of extant models for normal tissue complication probability estimation for osteoradionecrosis (ORN) of the mandible, the purpose of this study was to enrich statistical inference by exploiting structural properties of data and provide a clinically reliable model for ORN risk evaluation through an unsupervised-learning analysis that incorporates the whole radiation dose distribution on the mandible. Methods and Materials The analysis was conducted on retrospective data of 1259 patients with head and neck cancer treated at The University of Texas MD Anderson Cancer Center between 2005 and 2015. During a minimum 12-month posttherapy follow-up period, 173 patients in this cohort (13.7%) developed ORN (grades I to IV). The (structural) clusters of mandibular dose-volume histograms (DVHs) for these patients were identified using the K-means clustering method. A soft-margin support vector machine was used to determine the cluster borders and partition the dose-volume space. The risk of ORN for each dose-volume region was calculated based on incidence rates and other clinical risk factors. Results The K-means clustering method identified 6 clusters among the DVHs. Based on the first 5 clusters, the dose-volume space was partitioned by the soft-margin support vector machine into distinct regions with different risk indices. The sixth cluster entirely overlapped with the others; the region of this cluster was determined by its envelopes. For each region, the ORN incidence rate per preradiation dental extraction status (a statistically significant, nondose related risk factor for ORN) was reported as the corresponding risk index. Conclusions This study presents an unsupervised-learning analysis of a large-scale data set to evaluate the risk of mandibular ORN among patients with head and neck cancer. The results provide a visual risk-assessment tool for ORN (based on the whole DVH and preradiation dental extraction status) as well as a range of constraints for dose optimization under different risk levels.Item Computed Tomography Radiomics Kinetics as Early Imaging Correlates of Osteoradionecrosis in Oropharyngeal Cancer Patients(Frontiers Media S.A., 2021) Barua, Souptik; Elhalawani, Hesham; Volpe, Stefania; Al Feghali, Karine A.; Yang, Pei; Ng, Sweet Ping; Elgohari, Baher; Granberry, Robin C.; Mackin, Dennis S.; Gunn, G. Brandon; Hutcheson, Katherine A.; Chambers, Mark S.; Court, Laurence E.; Mohamed, Abdallah S.R.; Fuller, Clifton D.; Lai, Stephen Y.; Rao, ArvindOsteoradionecrosis (ORN) is a major side-effect of radiation therapy in oropharyngeal cancer (OPC) patients. In this study, we demonstrate that early prediction of ORN is possible by analyzing the temporal evolution of mandibular subvolumes receiving radiation. For our analysis, we use computed tomography (CT) scans from 21 OPC patients treated with Intensity Modulated Radiation Therapy (IMRT) with subsequent radiographically-proven ≥ grade II ORN, at three different time points: pre-IMRT, 2-months, and 6-months post-IMRT. For each patient, radiomic features were extracted from a mandibular subvolume that developed ORN and a control subvolume that received the same dose but did not develop ORN. We used a Multivariate Functional Principal Component Analysis (MFPCA) approach to characterize the temporal trajectories of these features. The proposed MFPCA model performs the best at classifying ORN vs. Control subvolumes with an area under curve (AUC) = 0.74 [95% confidence interval (C.I.): 0.61–0.90], significantly outperforming existing approaches such as a pre-IMRT features model or a delta model based on changes at intermediate time points, i.e., at 2- and 6-month follow-up. This suggests that temporal trajectories of radiomics features derived from sequential pre- and post-RT CT scans can provide markers that are correlates of RT-induced mandibular injury, and consequently aid in earlier management of ORN.Item MR-Guided Adaptive Radiotherapy for OAR Sparing in Head and Neck Cancers(MDPI, 2022) Mulder, Samuel L.; Heukelom, Jolien; McDonald, Brigid A.; Van Dijk, Lisanne; Wahid, Kareem A.; Sanders, Keith; Salzillo, Travis C.; Hemmati, Mehdi; Schaefer, Andrew; Fuller, Clifton D.MR-linac devices offer the potential for advancements in radiotherapy (RT) treatment of head and neck cancer (HNC) by using daily MR imaging performed at the time and setup of treatment delivery. This article aims to present a review of current adaptive RT (ART) methods on MR-Linac devices directed towards the sparing of organs at risk (OAR) and a view of future adaptive techniques seeking to improve the therapeutic ratio. This ratio expresses the relationship between the probability of tumor control and the probability of normal tissue damage and is thus an important conceptual metric of success in the sparing of OARs. Increasing spatial conformity of dose distributions to target volume and OARs is an initial step in achieving therapeutic improvements, followed by the use of imaging and clinical biomarkers to inform the clinical decision-making process in an ART paradigm. Pre-clinical and clinical findings support the incorporation of biomarkers into ART protocols and investment into further research to explore imaging biomarkers by taking advantage of the daily MR imaging workflow. A coherent understanding of this road map for RT in HNC is critical for directing future research efforts related to sparing OARs using image-guided radiotherapy (IGRT).Item Optimized decision support for selection of transoral robotic surgery or (chemo)radiation therapy based on posttreatment swallowing toxicity(Wiley, 2023) Hemmati, Mehdi; Barbon, Carly; Mohamed, Abdallah S.R.; van Dijk, Lisanne V.; Moreno, Amy C.; Gross, Neil D.; Goepfert, Ryan P.; Lai, Stephen Y.; Hutcheson, Katherine A.; Schaefer, Andrew J.; Fuller, Clifton D.Background A primary goal in transoral robotic surgery (TORS) for oropharyngeal squamous cell cancer (OPSCC) survivors is to optimize swallowing function. However, the uncertainty in the outcomes of TORS including postoperative residual positive margin (PM) and extranodal extension (ENE), may necessitate adjuvant therapy, which may cause significant swallowing toxicity to survivors. Methods A secondary analysis was performed on a prospective registry data with low- to intermediate-risk human papillomavirus–related OPSCC possibly resectable by TORS. Decision trees were developed to model the uncertainties in TORS compared with definitive radiation therapy (RT) and chemoradiation therapy (CRT). Swallowing toxicities were measured by Dynamic Imaging Grade of Swallowing Toxicity (DIGEST), MD Anderson Dysphagia Inventory (MDADI), and the MD Anderson Symptom Inventory–Head and Neck (MDASI-HN) instruments. The likelihoods of PM/ENE were varied to determine the thresholds within which each therapy remains optimal. Results Compared with RT, TORS resulted in inferior swallowing function for moderate likelihoods of PM/ENE (>60% in short term for all instruments, >75% in long term for DIGEST and MDASI) leaving RT as the optimal treatment. Compared with CRT, TORS remained the optimal therapy based on MDADI and MDASI but showed inferior swallowing outcomes based on DIGEST for moderate-to-high likelihoods of PM/ENE (>75% for short-term and >40% for long-term outcomes). Conclusion In the absence of reliable estimation of postoperative PM/ENE concurrent with significant postoperative PM, the overall toxicity level in OPSCC patients undergoing TORS with adjuvant therapy may become more severe compared with patients receiving nonsurgical treatments thus advocating definitive (C)RT protocols.