Browsing by Author "Frey, Eric W."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Mechanical Activation of a Multimeric Adhesive Protein Through Domain Conformational Change(American Physical Society, 2013) Wijeratne, Sithara S.; Botello, Eric; Yeh, Hui-Chun; Zhou, Zhou; Bergeron, Angela L.; Frey, Eric W.; Patel, Jay M.; Nolasco, Leticia; Turner, Nancy A.; Moake, Joel L.; Dong, Jing-fei; Kiang, Ching-HwaThe mechanical force-induced activation of the adhesive protein von Willebrand factor (VWF), which experiences high hydrodynamic forces, is essential in initiating platelet adhesion. The importance of the mechanical force-induced functional change is manifested in the multimeric VWF's crucial role in blood coagulation, when high fluid shear stress activates plasma VWF (PVWF) multimers to bind platelets. Here, we showed that a pathological level of high shear stress exposure of PVWF multimers results in domain conformational changes, and the subsequent shifts in the unfolding force allow us to use force as a marker to track the dynamic states of the multimeric VWF. We found that shear-activated PVWF multimers are more resistant to mechanical unfolding than nonsheared PVWF multimers, as indicated in the higher peak unfolding force. These results provide insight into the mechanism of shear-induced activation of PVWF multimers.Item Single molecule force measurements of perlecan/HSPG2: A key component of the osteocyte pericellular matrix(Elsevier, 2016) Wijeratne, Sithara S.; Martinez, Jerahme R.; Grindel, Brian J.; Frey, Eric W.; Li, Jingqiang; Wang, Liyun; Farach-Carson, Mary C.; Kiang, Ching-HwaPerlecan/HSPG2, a large, monomeric heparan sulfate proteoglycan (HSPG), is a key component of the lacunar canalicular system (LCS) of cortical bone, where it is part of the mechanosensing pericellular matrix (PCM) surrounding the osteocytic processes and serves as a tethering element that connects the osteocyte cell body to the bone matrix. Within the pericellular space surrounding the osteocyte cell body, perlecan can experience physiological fluid flow drag force and in that capacity function as a sensor to relay external stimuli to the osteocyte cell membrane. We previously showed that a reduction in perlecan secretion alters the PCM fiber composition and interferes with bone's response to a mechanical loading in vivo. To test our hypothesis that perlecan core protein can sustain tensile forces without unfolding under physiological loading conditions, atomic force microscopy (AFM) was used to capture images of perlecan monomers at nanoscale resolution and to perform single molecule force measurement (SMFMs). We found that the core protein of purified full-length human perlecan is of suitable size to span the pericellular space of the LCS, with a measured end-to-end length of 170 ± 20 nm and a diameter of 2–4 nm. Force pulling revealed a strong protein core that can withstand over 100 pN of tension well over the drag forces that are estimated to be exerted on the individual osteocyte tethers. Data fitting with an extensible worm-like chain model showed that the perlecan protein core has a mean elastic constant of 890 pN and a corresponding Young's modulus of 71 MPa. We conclude that perlecan has physical properties that would allow it to act as a strong but elastic tether in the LCS.Item Single-molecule force measurements of the polymerizing dimeric subunit of von Willebrand factor(American Physical Society, 2016) Wijeratne, Sithara S.; Li, Jingqiang; Yeh, Hui-Chun; Nolasco, Leticia; Zhou, Zhou; Bergeron, Angela; Frey, Eric W.; Moake, Joel L.; Dong, Jing-fei; Kiang, Ching-HwaVon Willebrand factor (VWF) multimers are large adhesive proteins that are essential to the initiation of hemostatic plugs at sites of vascular injury. The binding of VWF multimers to platelets, as well as VWF proteolysis, is regulated by shear stresses that alter VWF multimeric conformation. We used single molecule manipulation with atomic force microscopy (AFM) to investigate the effect of high fluid shear stress on soluble dimeric and multimeric forms of VWF. VWF dimers are the smallest unit that polymerizes to construct large VWF multimers. The resistance to mechanical unfolding with or without exposure to shear stress was used to evaluate VWF conformational forms. Our data indicate that, unlike recombinant VWF multimers (RVWF), recombinant dimeric VWF (RDVWF) unfolding force is not altered by high shear stress (100dynes/cm2 for 3 min at 37∘C). We conclude that under the shear conditions used (100dynes/cm2 for 3 min at 37∘C), VWF dimers do not self-associate into a conformation analogous to that attained by sheared large VWF multimers.Item Understanding the physics of DNA using nanoscale single-molecule manipulation(Springer, 2012) Frey, Eric W.; Gooding, Ashton A.; Wijeratne, Sitara; Kiang, Ching-HwaProcesses for decoding the genetic information in cells, including transcription, replication, recombination and repair, involve the deformation of DNA from its equilibrium structures such as bending, stretching, twisting, and unzipping of the double helix. Single-molecule manipulation techniques have made it possible to control DNA conformation and simultaneously detect the induced changes, revealing a rich variety of mechanically-induced conformational changes and thermodynamic states. These single-molecule techniques helped us to reveal the physics of DNA and the processes involved in the passing on of the genetic code.