Browsing by Author "Fong, Eliza L.S."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item A 3D inᅠvitro model of patient-derived prostate cancer xenograft for controlled interrogation of inᅠvivo tumor-stromal interactions(Elsevier, 2016) Fong, Eliza L.S.; Wan, Xinhai; Yang, Jun; Morgado, Micaela; Mikos, Antonios G.; Harrington, Daniel Anton; Navone, Nora M.; Farach-Carson, Mary C.Patient-derived xenograft (PDX) models better represent human cancer than traditional cell lines. However, the complex in vivo environment makes it challenging to employ PDX models to investigate tumor-stromal interactions, such as those that mediate prostate cancer (PCa) bone metastasis. Thus, we engineered a defined three-dimensional (3D) hydrogel system capable of supporting the co-culture of PCa PDX cells and osteoblastic cells to recapitulate the PCa-osteoblast unit within the bone metastatic microenvironment in vitro. Our 3D model not only maintained cell viability but also preserved the typical osteogenic phenotype of PCa PDX cells. Additionally, co-culture cellularity was maintained over that of either cell type cultured alone, suggesting that the PCa-osteoblast cross-talk supports PCa progression in bone, as is hypothesized to occur in patients with prostatic bone metastasis. Strikingly, osteoblastic cells co-cultured with PCa PDX tumoroids organized around the tumoroids, closely mimicking the architecture of PCa metastases in bone. Finally, tumor-stromal signaling mediated by the fibroblast growth factor axis tightly paralleled that in the in vivo counterpart. Together, these findings indicate that this 3D PCa PDX model recapitulates important pathological properties of PCa bone metastasis, and validate the use of this model for controlled and systematic interrogation of complex in vivo tumor-stromal interactions.Item Building Bridges: Leveraging Interdisciplinary Collaborations in the Development of Biomaterials to Meet Clinical Needs(Wiley, 2012) Fong, Eliza L.S.; Watson, Brendan M.; Kasper, F. Kurtis; Mikos, Antonios G.Our laboratory at Rice University has forged numerous collaborations with clinicians and basic scientists over the years to advance the development of novel biomaterials and the modification of existing materials to meet clinical needs. This review highlights collaborative advances in biomaterials research from our laboratory in the areas of scaffold development, drug delivery, and gene therapy, especially as related to applications in bone and cartilage tissue engineering.Item Data describing the swelling behavior and cytocompatibility of biodegradable polyelectrolyte hydrogels incorporating poly(L-lysine) for applications in cartilage tissue engineering(Elsevier, 2016) Lam, Johnny; Clark, Elisa C.; Fong, Eliza L.S.; Lee, Esther J.; Lu, Steven; Tabata, Yasuhiko; Mikos, Antonios G.This data article presents data associated with the research article entitled "Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(L-lysine) for applications in cartilage tissue engineering" (Lam et al., 2016) [1]. Synthetic hydrogel composites fabricated using oligo(poly(ethylene glycol) fumarate) (OPF) macromers were utilized as vehicles for the incorporation of poly(L-lysine) (PLL) as well as the encapsulation of mesenchymal stem cells (MSCs). PLL-laden and PLL-free hydrogels were fabricated to characterize the main and interaction effects of OPF molecular weight, PLL molecular weight, and PLL loading density on the swelling and degradation of synthetic OPF hydrogels. Cells were then encapsulated within such hydrogels for in vitro culture and examined for viability, biochemical activity, and chondrogenic gene expression. These data, which are supplementary to the associated research article (Lam et al., 2016) [1], are presented here.Item Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(l-Lysine) for applications in cartilage tissue engineering(Elsevier, 2016) Lam, Johnny; Clark, Elisa C.; Fong, Eliza L.S.; Lee, Esther J.; Lu, Steven; Tabata, Yasuhiko; Mikos, Antonios G.To address the lack of reliable long-term solutions for cartilage injuries, strategies in tissue engineering are beginning to leverage developmental processes to spur tissue regeneration. This study focuses on the use of poly(l-lysine) (PLL), previously shown to up-regulate mesenchymal condensation during developmental skeletogenesis inᅠvitro, as an early chondrogenic stimulant of mesenchymal stem cells (MSCs). We characterized the effect of PLL incorporation on the swelling and degradation of oligo(poly(ethylene) glycol) fumarate) (OPF)-based hydrogels as functions of PLL molecular weight and dosage. Furthermore, we investigated the effect of PLL incorporation on the chondrogenic gene expression of hydrogel-encapsulated MSCs. The incorporation of PLL resulted in early enhancements of type II collagen and aggrecan gene expression and type II/type I collagen expression ratios when compared to blank controls. The presentation of PLL to MSCs encapsulated in OPF hydrogels also enhanced N-cadherin gene expression under certain culture conditions, suggesting that PLL may induce the expression of condensation markers in synthetic hydrogel systems. In summary, PLL can function as an inductive factor that primes the cellular microenvironment for early chondrogenic gene expression but may require additional biochemical factors for the generation of fully functional chondrocytes.Item Hydrogel-Based 3D Model of Patient-Derived Prostate Xenograft Tumors Suitable for Drug Screening(American Chemical Society, 2014) Fong, Eliza L.S.; Martinez, Mariane; Yang, Jun; Mikos, Antonios G.; Navone, Nora M.; Harrington, Daniel Anton; Farach-Carson, Mary C.The lack of effective therapies for bone metastatic prostate cancer (PCa) underscores the need for accurate models of the disease to enable the discovery of new therapeutic targets and to test drug sensitivities of individual tumors. To this end, the patient-derived xenograft (PDX) PCa model using immunocompromised mice was established to model the disease with greater fidelity than is possible with currently employed cell lines grown on tissue culture plastic. However, poorly adherent PDX tumor cells exhibit low viability in standard culture, making it difficult to manipulate these cells for subsequent controlled mechanistic studies. To overcome this challenge, we encapsulated PDX tumor cells within a three-dimensional hyaluronan-based hydrogel and demonstrated that the hydrogel maintains PDX cell viability with continued native androgen receptor expression. Furthermore, a differential sensitivity to docetaxel, a chemotherapeutic drug, was observed as compared to a traditional PCa cell line. These findings underscore the potential impact of this novel 3D PDX PCa model as a diagnostic platform for rapid drug evaluation and ultimately push personalized medicine toward clinical reality.Item Sustained delivery of recombinant human bone morphogenetic protein-2 from perlecan domain I - functionalized electrospun poly (ε-caprolactone) scaffolds for bone regeneration(Springer Nature, 2016) Chiu, Yu-Chieh; Fong, Eliza L.S.; Grindel, Brian J.; Kasper, Fred K.; Harrington, Daniel Anton; Farach-Carson, Mary C.Background: Biomaterial scaffolds that deliver growth factors such as recombinant human bone morphogenetic proteins-2 (rhBMP-2) have improved clinical bone tissue engineering by enhancing bone tissue regeneration. This approach could be further improved if the controlled delivery of bioactive rhBMP-2 were sustained throughout the duration of osteogenesis from fibrous scaffolds that provide control over dose and bioactivity of rhBMP-2. In nature, heparan sulfate attached to core proteoglycans serves as the co-receptor that delivers growth factors to support tissue morphogenesis. Methods: To mimic this behavior, we conjugated heparan sulfate decorated recombinant domain I of perlecan/HSPG2 onto an electrospun poly(ε-caprolactone) (PCL) scaffold, hypothesizing that the heparan sulfate chains will enhance rhBMP-2 loading onto the scaffold and preserve delivered rhBMP-2 bioactivity. Results: In this study, we demonstrated that covalently conjugated perlecan domain I increased loading capacity of rhBMP-2 onto PCL scaffolds when compared to control unconjugated scaffolds. Additionally, rhBMP-2 released from the modified scaffolds enhanced alkaline phosphatase activity in W20–17 mouse bone marrow stromal cells, indicating the preservation of rhBMP-2 bioactivity indicative of osteogenesis. Conclusions: We conclude that this platform provides a sophisticated and efficient approach to deliver bioactive rhBMP-2 for bone tissue regeneration applications.Item Sustained delivery of recombinant human bone morphogenetic protein-2 from perlecan domain I - functionalized electrospun poly (ε-caprolactone) scaffolds for bone regeneration(Springer, 2016) Chiu, Yu-Chieh; Fong, Eliza L.S.; Grindel, Brian J.; Kasper, Fred K.; Harrington, Daniel Anton; Farach-Carson, Mary C.Background: Biomaterial scaffolds that deliver growth factors such as recombinant human bone morphogenetic proteins-2 (rhBMP-2) have improved clinical bone tissue engineering by enhancing bone tissue regeneration. This approach could be further improved if the controlled delivery of bioactive rhBMP-2 were sustained throughout the duration of osteogenesis from fibrous scaffolds that provide control over dose and bioactivity of rhBMP-2. In nature, heparan sulfate attached to core proteoglycans serves as the co-receptor that delivers growth factors to support tissue morphogenesis. Methods: To mimic this behavior, we conjugated heparan sulfate decorated recombinant domain I of perlecan/HSPG2 onto an electrospun poly(ε-caprolactone) (PCL) scaffold, hypothesizing that the heparan sulfate chains will enhance rhBMP-2 loading onto the scaffold and preserve delivered rhBMP-2 bioactivity. Results: In this study, we demonstrated that covalently conjugated perlecan domain I increased loading capacity of rhBMP-2 onto PCL scaffolds when compared to control unconjugated scaffolds. Additionally, rhBMP-2 released from the modified scaffolds enhanced alkaline phosphatase activity in W20–17 mouse bone marrow stromal cells, indicating the preservation of rhBMP-2 bioactivity indicative of osteogenesis. Conclusions: We conclude that this platform provides a sophisticated and efficient approach to deliver bioactive rhBMP-2 for bone tissue regeneration applications.Item Three-dimensional (3D) culture of bone-derived human 786-O renal cell carcinoma retains relevant clinical characteristics of bone metastases(Elsevier, 2015) Pan, Tianhong; Fong, Eliza L.S.; Martinez, Mariane; Harrington, Daniel Anton; Lin, Sue-Hwa; Farach-Carson, Mary C.; Satcher, Robert L.Bone metastases from renal cell carcinoma (RCC) are typically lytic, destructive, and resistant to treatment regimens. Current in vitro models for studying metastasis introduce artifacts that limit their usefulness. Many features of tumors growing in bone are lost when human RCC cells are cultured in two-dimensional (2D) plastic substrata. In this study, we established that RCC spheroids, consisting of aggregates of cells, can be grown in a three-dimensional (3D) hyaluronate hydrogel-based culture system. The bone-derived human 786-O RCC subline proliferated and survived long term in these hydrogels. Additionally, RCC spheroids in 3D hydrogels demonstrated lower proliferation rates than their counterparts grown in 2D. Overall, gene expression patterns of RCC spheroids in 3D more closely mimicked those observed in vivo than did those of cells grown in 2D. Of particular importance, selected adhesion molecules, angiogenesis factors, and osteolytic factors that have been shown to be involved in RCC bone metastasis were found to be expressed at higher levels in 3D than in 2D cultures. We propose that the 3D culture system provides an improved platform for RCC bone metastasis studies compared with 2D systems.