Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Figueiredo, Mario"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Coding Theoretic Approach to Image Segmentation
    (2001-10-20) Ndili, Unoma; Nowak, Robert David; Figueiredo, Mario; Digital Signal Processing (http://dsp.rice.edu/)
    In this paper, using a coding theoretic approach, we implement Rissanen's concept of minimum description length (MDL) for segmenting an image into piecewise homogeneous regions. Our image model is a Gaussian random field whose mean and variance functions are piecewise constant across the image. The image pixels are (conditionally) independent and Gaussian, given the mean and variance functions. The model is intended to capture variations in both intensity (mean value) and texture (variance). We adopt a multi-scale tree based approach to develop two segmentation algorithms, using MDL to penalize overly complex segmentations. One algorithm is based on an adaptive (greedy) rectangular partitioning scheme. The second algorithm is an optimally-pruned wedgelet decorated dyadic partitioning. We compare the two schemes with an alternative constant variance dyadic CART (classification and regression tree) scheme which accounts only for variations in mean, and demonstrate their performance with SAR image segmentation problems.
  • No Thumbnail Available
    Item
    Image Restoration Using the EM Algorithm and Wavelet-Based Complexity Regularization
    (2002-05-20) Figueiredo, Mario; Nowak, Robert David; Digital Signal Processing (http://dsp.rice.edu/)
    This paper introduces an expectation-maximization (EM) algorithm for image restoration (deconvolution) based on a penalized likelihood formulated in the wavelet domain. Regularization is achieved by promoting a reconstruction with low-complexity, expressed in terms of teh wavelet coefficients, taking advantage of the well known sparsity of wavelet representations. Previous works have investigated wavelet-based restoration but, except for certain special cases, teh resulting criteria are solved approximately or requre very demanding optimization methods. The EM algorithm herein proposed combines the efficient image representation offered by the discrete wavelet transform (DWT) with the diagonalization of the convolution operator obtained in teh Fourier domain. The algorithm alternates between an E-step based on teh fast Fourier transform (FFT) and a DWT-based M-step, resulting in an efficient iterative process requiring O(NlogN) operations per iteration. Thus, it is the first image restoration algorithm that optimizes a wavelet-based penalized likelihood criterion and has computational complexity comparable to that of standard wavelet denoising or frequency domain deconvolution methods. The convergence behavior of the algorithm is investigated, and it is shown that under mild conditions the algorithm converges to a globally optimal restoration. Morever, our new approach outperforms several of the best existing methods in benchmark tests, and in some cases is also much less computationally demanding.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892