Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Fast, Caleb C."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Branch Decomposition Algorithm for the p-Median Problem
    (INFORMS, 2017) Fast, Caleb C.; Hicks, Illya V.
    In this paper, we use a branch decomposition technique to improve approximations to the p-median problem. Starting from a support graph produced either by a combination of heuristics or by linear programming, we use dynamic programming guided by a branch decomposition of that support graph to find the best p-median solution on the support graph. Our results show that when heuristics are used to build the support graph and the support graph has branchwidth at most 7, our algorithm is able to provide a solution of lower cost than any of the heuristic solutions. When linear programming is used to build the support graph and the support graph has branchwidth at most 7, then our algorithm provides better solutions than popular heuristics and is faster than integer programming. Thus, our algorithm is a useful practical tool when support graphs have branchwidth at most 7.
  • Loading...
    Thumbnail Image
    Item
    Novel Techniques for the Zero-Forcing and p-Median Graph Location Problems
    (2017-05) Fast, Caleb C.
    This thesis presents new methods for solving two graph location problems, the p-Median problem and the zero-forcing problem. For the p-median problem, I present a branch decomposition based method that finds the best p-median solution that is limited to some input support graph. The algorithm can be used to either find an integral solution from a fractional linear programming solution, or it can be used to improve on the solutions given by a pool of heuristics. In either use, the algorithm compares favorably in running time or solution quality to state-of-the-art heuristics. For the zero-forcing problem, this thesis gives both theoretical and computational results. In the theoretical section, I show that the branchwidth of a graph is a lower bound on its zero-forcing number, and I introduce new bounds on the zero-forcing iteration index for cubic graphs. This thesis also introduces a special type of graph structure, a zero-forcing fort, that provides a powerful tool for the analysis and modeling of zero-forcing problems. In the computational section, I introduce multiple integer programming models for finding minimum zero-forcing sets and integer programming and combinatorial branch and bound methods for finding minimum connected zero-forcing sets. While the integer programming methods do not perform better than the best combinatorial method for the basic zero-forcing problem, they are easily adapted to the connected zero-forcing problem, and they are the best methods for the connected zero-forcing problem.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892