Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Fast, Caleb C"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Novel Techniques for the Zero-Forcing and p-Median Graph Location Problems
    (2017-03-31) Fast, Caleb C; Hicks, Illya V
    This thesis presents new methods for solving two graph location problems, the p-Median problem and the zero-forcing problem. For the p-median problem, I present a branch decomposition based method that finds the best p-median solution that is limited to some input support graph. The algorithm can be used to either find an integral solution from a fractional linear programming solution, or it can be used to improve on the solutions given by a pool of heuristics. In either use, the algorithm compares favorably in running time or solution quality to state-of-the-art heuristics. For the zero-forcing problem, this thesis gives both theoretical and computational results. In the theoretical section, I show that the branchwidth of a graph is a lower bound on its zero-forcing number, and I introduce new bounds on the zero-forcing iteration index for cubic graphs. This thesis also introduces a special type of graph structure, a zero-forcing fort, that provides a powerful tool for the analysis and modeling of zero-forcing problems. In the computational section, I introduce multiple integer programming models for finding minimum zero-forcing sets and integer programming and combinatorial branch and bound methods for finding minimum connected zero-forcing sets. While the integer programming methods do not perform better than the best combinatorial method for the basic zero-forcing problem, they are easily adapted to the connected zero-forcing problem, and they are the best methods for the connected zero-forcing problem.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892