Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Faloutsos , Michalis"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Long-Range Dependence: Now you see it now you don't!
    (2002-11-20) Karagiannis , Thomas; Faloutsos , Michalis; Riedi, Rudolf H.; Center for Multimedia Communications (http://cmc.rice.edu/); Digital Signal Processing (http://dsp.rice.edu/)
    Over the last few years, the network community has started to rely heavily on the use of novel concepts such as self-similarity and Long-Range Dependence (LRD). Despite their wide use, there is still much confusion regarding the identification of such phenomena in real network traffic data. In this paper, we show that estimating Long Range Dependence is not straightforward: there is no systematic or definitive methodology. There exist several estimating methodologies, but they can give misleading and conflicting estimates. More specifically, we arrive at several conclusions that could provide guidelines for a systematic approach to LRD. First, long-range dependence may exist even, if the estimators have different estimates in value. Second, long-range dependence is unlikely to exist, if there are several estimators that do not ``converge'' statistically to a value. Third, we show that periodicity can obscure the analysis of a signal giving partial evidence of long range dependence. Fourth, the Whittle estimator is the most accurate in finding the exact value when LRD exists, but it can be fooled easily by periodicity. As a case-study, we analyze real round-trip time data. We find and remove a periodic component from the signal, before we can identify long-range dependence in the remaining signal.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892