Browsing by Author "Fallas Padilla, Diego"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Perfect intrinsic squeezing at the superradiant phase transition critical point(Springer Nature, 2023) Hayashida, Kenji; Makihara, Takuma; Marquez Peraca, Nicolas; Fallas Padilla, Diego; Pu, Han; Kono, Junichiro; Bamba, MotoakiSome of the most exotic properties of the quantum vacuum are predicted in ultrastrongly coupled photon–atom systems; one such property is quantum squeezing leading to suppressed quantum fluctuations of photons and atoms. This squeezing is unique because (1) it is realized in the ground state of the system and does not require external driving, and (2) the squeezing can be perfect in the sense that quantum fluctuations of certain observables are completely suppressed. Specifically, we investigate the ground state of the Dicke model, which describes atoms collectively coupled to a single photonic mode, and we found that the photon–atom fluctuation vanishes at the onset of the superradiant phase transition in the thermodynamic limit of an infinite number of atoms. Moreover, when a finite number of atoms is considered, the variance of the fluctuation around the critical point asymptotically converges to zero, as the number of atoms is increased. In contrast to the squeezed states of flying photons obtained using standard generation protocols with external driving, the squeezing obtained in the ground state of the ultrastrongly coupled photon–atom systems is resilient against unpredictable noise.Item Quantum simulation of an extended Dicke model with a magnetic solid(Springer Nature, 2024) Marquez Peraca, Nicolas; Li, Xinwei; Moya, Jaime M.; Hayashida, Kenji; Kim, Dasom; Ma, Xiaoxuan; Neubauer, Kelly J.; Fallas Padilla, Diego; Huang, Chien-Lung; Dai, Pengcheng; Nevidomskyy, Andriy H.; Pu, Han; Morosan, Emilia; Cao, Shixun; Bamba, Motoaki; Kono, JunichiroThe Dicke model describes the cooperative interaction of an ensemble of two-level atoms with a single-mode photonic field and exhibits a quantum phase transition as a function of light–matter coupling strength. Extending this model by incorporating short-range atom–atom interactions makes the problem intractable but is expected to produce new physical phenomena and phases. Here, we simulate such an extended Dicke model using a crystal of ErFeO3, where the role of atoms (photons) is played by Er3+ spins (Fe3+ magnons). Through terahertz spectroscopy and magnetocaloric effect measurements as a function of temperature and magnetic field, we demonstrated the existence of a novel atomically ordered phase in addition to the superradiant and normal phases that are expected from the standard Dicke model. Further, we elucidated the nature of the phase boundaries in the temperature–magnetic-field phase diagram, identifying both first-order and second-order phase transitions. These results lay the foundation for studying multiatomic quantum optics models using well-characterized many-body solid-state systems.