Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "FONTECILLA, RODRIGO"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A GENERAL CONVERGENCE THEORY FOR QUASI-NEWTON METHODS FOR CONSTRAINED OPTIMIZATION
    (1984) FONTECILLA, RODRIGO
    In this thesis we study the local convergence of quasi-Newton methods for nonlinear optimization problems with nonlinear equality constraints. A general theory for analyzing the local convergence of the sequence {x(,k)} generated by the diagonalized quasi-Newton method is developed. Conditions on the multiplier update that allow one to determine whether the convergence is q-linear in the x variable alone or in the pair (x,(lamda)) where (lamda) is the correspondent multiplier are specified. Two characterizations of q-superlinear convergence of the sequence {x(,k)} are given. The satisfaction of linearized constraints seems necessary to obtain q-superlinear convergence in the x variable. The use of the DFP or the BFGS secant updates requires the Hessian at the solution to be positive definite. The second order sufficiency conditions insure the positive definiteness only in a subspace of R('n). Conditions are given so we can safely update with either update. A new class of algorithms is proposed which generate a sequence {x(,k)} converging 2-step q-superlinearly. We propose an algorithm that converges q-superlinearly if the Hessian is positive definite in R('n) and it converges 2-step q-superlinearly if the Hessian is positive definite only in a subspace.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892