Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Eydelzon, Anatoly"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Study on Conditions for Sparse Solution Recovery in Compressive Sensing
    (2007-08) Eydelzon, Anatoly
    It is well-known by now that under suitable conditions L1 minimization can recover sparse solutions to under-determined linear systems of equations. More precisely, by solving the convex optimization problem min{||x||1 : Αx = b}, where A is an m by n measurement matrix with m < n, one can obtain the sparsest solution x* to Ax = b provided that the measurement matrix A has certain properties and the sparsity level k of x is suffciently small. This fact has led to active research in the area of compressive sensing and other applications. The central question for this problem is the following. Given a type of measurements, a signal's length n and sparsity level k, what is the minimum measurement size m that ensures recovery? Or equivalently, given a type of measurements, a signal length n and a measurement size m, what is the maximum recoverable sparsity level k? The above fundamental question has been answered, with varying degrees of precision, by a number of researchers for a number of different random or semi-random measurement matrices. However, all the existing results still involve unknown constants of some kind and thus are unable to provide precise answers to specific situations. For example, let A be an m by n partial DCT matrix with n = 107 and m = 5 x 105 (n/m = 20). Can we provide a reasonably good estimate on the maximum recoverable sparsity k? In this research, we attempt to provide a more precise answer to the central question raised above. By studying new suffcient conditions for exact recovery of sparse solutions, we propose a new technique to estimate recoverable sparsity for different kinds of deterministic, random and semi-random matrices. We will present empirical evidence to show the practical success of our approach, though further research is still needed to formally establish its effectiveness.
  • Loading...
    Thumbnail Image
    Item
    A study on conditions for sparse solution recovery in compressive sensing
    (2008) Eydelzon, Anatoly; Zhang, Yin
    It is well-known by now that tinder suitable conditions ℓ1 minimization can recover sparse solutions to under-determined linear systems of equations. More precisely, by solving the convex optimization problem min{∥ x∥1 : Ax = b}, where A is an m x n measurement matrix with m < n, one can obtain the sparsest solution x* to Ax = b provided that the measurement matrix A has certain properties and the sparsity level k of x* is sufficiently small. This fact has led to active research in the area of compressive sensing and other applications. The central question for this problem is the following. Given a type of measurements, a signal's length n and sparsity level k, what is the minimum measurement size m that ensures recovery? Or equivalently, given a type of measurements, a signal length n and a measurement size m, what is the maximum recoverable sparsity level k? The above fundamental question has been answered, with varying degrees of precision, by a number of researchers for a number of different random or semi-random measurement matrices. However, all the existing results still involve unknown constants of some kind and thus are unable to provide precise answers to specific situations. For example, let A be an m x n partial DCT matrix with n = 107 and m = 5 x 105 (n/m = 20). Can we provide a reasonably good estimate on the maximum recoverable sparsity k? In this research we attempt to provide a more precise answer to the central question raised above. By studying new sufficient conditions for exact recovery of sparse solutions, we propose a new technique to estimate recoverable sparsity for different kinds of deterministic, random and semi-random matrices. We will present empirical evidence to show the practical success of our approach, though further research is still needed to formally establish its effectiveness.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892