Browsing by Author "Ewings, R.A."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Coexistence of Ferromagnetic and Stripe Antiferromagnetic Spin Fluctuations in SrCo2As2(American Physical Society, 2019) Li, Yu; Yin, Zhiping; Liu, Zhonghao; Wang, Weiyi; Xu, Zhuang; Song, Yu; Tian, Long; Huang, Yaobo; Shen, Dawei; Abernathy, D.L.; Niedziela, J.L.; Ewings, R.A.; Perring, T.G.; Pajerowski, Daniel M.; Matsuda, Masaaki; Bourges, Philippe; Mechthild, Enderle; Su, Yixi; Dai, PengchengWe use inelastic neutron scattering to study energy and wave vector dependence of spin fluctuations in SrCo2As2, derived from SrFe2−xCoxAs2 iron pnictide superconductors. Our data reveal the coexistence of antiferromagnetic (AF) and ferromagnetic (FM) spin fluctuations at wave vectors QAF=(1,0) and QFM=(0,0)/(2,0), respectively. By comparing neutron scattering results with those of dynamic mean field theory calculation and angle-resolved photoemission spectroscopy experiments, we conclude that both AF and FM spin fluctuations in SrCo2As2 are closely associated with a flatband of the eg orbitals near the Fermi level, different from the t2g orbitals in superconducting SrFe2−xCoxAs2. Therefore, Co substitution in SrFe2−xCoxAs2 induces a t2g to eg orbital switching, and is responsible for FM spin fluctuations detrimental to the singlet pairing superconductivity.Item Spin excitations in optimally P-dopedᅠBaFe2(As0.7P0.3)2 superconductor(American Physical Society, 2016) Hu, Ding; Yin, Zhiping; Zhang, Wenliang; Ewings, R.A.; Ikeuchi, Kazuhiko; Nakamura, Mitsutaka; Roessli, Bertrand; Wei, Yuan; Zhao, Lingxiao; Chen, Genfu; Li, Shiliang; Luo, Huiqian; Haule, Kristjan; Kotliar, Gabriel; Dai, PengchengWe use inelastic neutron scattering to study the temperature and energy dependence of spin excitations in an optimally P-doped BaFe2(As0.7P0.3)2 superconductor (Tc=30 K) throughout the Brillouin zone. In the undoped state, spin waves and paramagnetic spin excitations of BaFe2As2stem from an antiferromagnetic (AF) ordering wave vector QAF=(±1,0), and peak near the zone boundary at (±1,±1) around 180 meV. Replacing 30% As by smaller P to induce superconductivity, low-energy spin excitations of BaFe2(As0.7P0.3)2 form a resonance in the superconducting state and high-energy spin excitations now peak around 220 meV near (±1,±1). These results are consistent with calculations from a combined density functional theory and dynamical mean field theory, and suggest that the decreased average pnictogen height in BaFe2(As0.7P0.3)2 reduces the strength of electron correlations and increases the effective bandwidth of magnetic excitations.Item Unknown Spin waves and spatially anisotropic exchange interactions in the $S=2$ stripe antiferromagnet ${\mathrm{Rb}}_{0.8}{\mathrm{Fe}}_{1.5}{\mathrm{S}}_{2}$(American Physical Society, 2015) Wang, Meng; Valdivia, P.; Yi, Ming; Chen, J.X.; Zhang, W.L.; Ewings, R.A.; Perring, T.G.; Zhao, Yang; Harriger, L.W.; Lynn, J.W.; Bourret-Courchesne, E.; Dai, Pengcheng; Lee, D.H.; Yao, D. X.; Birgeneau, R.J.An inelastic neutron scattering study of the spin waves corresponding to the stripe antiferromagnetic order in insulating Rb0.8Fe1.5S2 throughout the Brillouin zone is reported. The spin wave spectra are well described by a Heisenberg Hamiltonian with anisotropic in-plane exchange interactions. Integrating the ordered moment and the spin fluctuations results in a total moment squared of 27.6±4.2μ2B/Fe, consistent with S≈2. Unlike XFe2As2 (X=Ca, Sr, and Ba), where the itinerant electrons have a significant contribution, our data suggest that this stripe antiferromagnetically ordered phase in Rb0.8Fe1.5S2 is a Mott-like insulator with fully localized 3d electrons and a high-spin ground state configuration. Nevertheless, the anisotropic exchange couplings appear to be universal in the stripe phase of Fe pnictides and chalcogenides.Item Unknown Spin waves and spatially anisotropic exchange interactions in the S=2 stripe antiferromagnet Rb0.8Fe1.5S2(American Physical Society, 2015) Wang, Meng; Valdivia, P.; Yi, Ming; Chen, J.X.; Zhang, W.L.; Ewings, R.A.; Perring, T.G.; Zhao, Yang; Harriger, L.W.; Lynn, J.W.; Bourret-Courchesne, E.; Dai, Pengcheng; Lee, D.H.; Yao, D.X.; Birgeneau, R.J.An inelastic neutron scattering study of the spin waves corresponding to the stripe antiferromagnetic order in insulating Rb0.8Fe1.5S2 throughout the Brillouin zone is reported. The spin wave spectra are well described by a Heisenberg Hamiltonian with anisotropic in-plane exchange interactions. Integrating the ordered moment and the spin fluctuations results in a total moment squared of 27.6±4.2μ2B/Fe, consistent with S≈2. Unlike XFe2As2 (X=Ca, Sr, and Ba), where the itinerant electrons have a significant contribution, our data suggest that this stripe antiferromagnetically ordered phase in Rb0.8Fe1.5S2 is a Mott-like insulator with fully localized 3d electrons and a high-spin ground state configuration. Nevertheless, the anisotropic exchange couplings appear to be universal in the stripe phase of Fe pnictides and chalcogenides.