Browsing by Author "Ewald, Jessica M."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Rapid Metabolism of 1,4-Dioxane to below Health Advisory Levels by Thiamine-Amended Rhodococcus ruber Strain 219(American Chemical Society, 2021) Simmer, Reid A.; Richards, Patrick M.; Ewald, Jessica M.; Schwarz, Cory; da Silva, Marcio L.B.; Mathieu, Jacques; Alvarez, Pedro J.J.; Schnoor, Jerald L.Bioremediation is a promising treatment technology for 1,4-dioxane-contaminated groundwater. However, metabolic dioxane-degrading bacteria identified to date are limited by their slow kinetics and inability to sustain growth at low dioxane concentrations (<100 μg/L). Furthermore, strains may underperform because of missing growth factors, such as amino acids or vitamins. In this work, we reevaluate Rhodococcus ruber strain 219 as a dioxane-degrading strain with bioaugmentation potential. We report rapid growth and metabolic dioxane degradation by R. ruber 219 when supplemented with thiamine (vitamin B1). We also discern that the strain lacks a complete de novo thiamine synthesis pathway, indicating that R. ruber 219 is a probable thiamine auxotroph. However, when supplemented with thiamine, the strain’s Monod kinetics (Ks = 0.015 ± 0.03 μg/L) and exceedingly low Smin (0.49 ± 1.16 μg/L) suggest this strain can maintain growth at very low dioxane concentrations (<100 μg/L). Accordingly, we demonstrate that thiamine-grown R. ruber 219 sustains degradation of dilute dioxane (<100 μg/L) to below health advisory levels. This is the first study to report sustained metabolic dioxane biodegradation to below health advisory levels of 0.35 μg/L. Overall, our findings solidify R. ruber 219 as a promising candidate for bioremediation of dioxane-contaminated groundwater.