Browsing by Author "EPMoghaddam, Dorsa"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A graph-based cardiac arrhythmia classification methodology using one-lead ECG recordings(Elsevier, 2024) EPMoghaddam, Dorsa; Muguli, Ananya; Razavi, Mehdi; Aazhang, BehnaamIn this study, we present a novel graph-based methodology for an accurate classification of cardiac arrhythmia diseases using a single-lead electrocardiogram (ECG). The proposed approach employs the visibility graph technique to generate graphs from time signals. Subsequently, informative features are extracted from each graph and then fed into classifiers to match the input ECG signal with the appropriate target arrhythmia class. The six target classes in this study are normal (N), left bundle branch block (LBBB), right bundle branch block (RBBB), premature ventricular contraction (PVC), atrial premature contraction (A), and fusion (F) beats. Three classification models were explored, including graph convolutional neural network (GCN), multi-layer perceptron (MLP), and random forest (RF). ECG recordings from the MIT-BIH arrhythmia database were utilized to train and evaluate these classifiers. The results indicate that the multi-layer perceptron model attains the highest performance, showcasing an average accuracy of 99.02%. Following closely, the random forest achieves a strong performance as well, with an accuracy of 98.94% while providing critical intuitions.Item Epileptic seizure prediction using spectral width of the covariance matrix(IOP Publishing, 2022) EPMoghaddam, Dorsa; Sheth, Sameer A.; Haneef, Zulfi; Gavvala, Jay; Aazhang, BehnaamObjective. Epilepsy is a common neurological disorder in which patients suffer from sudden and unpredictable seizures. Seizures are caused by excessive and abnormal neuronal activity. Different methods have been employed to investigate electroencephalogram (EEG) data in patients with epilepsy. This paper introduces a simple yet accurate array-based method to study and predict seizures. Approach. We use the CHB-MIT dataset (all 24 cases), which includes scalp EEG recordings. The proposed method is based on the random matrix theory. After applying wavelet decomposition to denoise the data, we analyze the spatial coherence of the epileptic recordings by looking at the width of the covariance matrix eigenvalue distribution at different time and frequency bins. Main results. We train patient-specific support vector machine classifiers to distinguish between interictal and preictal data with high performance and a false prediction rate as low as 0.09 h−1. The proposed technique achieves an average accuracy, specificity, sensitivity, and area under the curve of 99.05%, 93.56%, 99.09%, and 0.99, respectively. Significance. Our proposed method outperforms state-of-the-art works in terms of sensitivity while maintaining a low false prediction rate. Also, in contrast to neural networks, which may achieve high performance, this work provides high sensitivity without compromising interpretability.