Browsing by Author "Duarte, Marco F."
Now showing 1 - 16 of 16
Results Per Page
Sort Options
Item An Introduction to Compressive Sensing(Rice University, 2014-08-26) Baraniuk, Richard; Davenport, Mark A.; Duarte, Marco F.; Hegde, ChinmayItem Analysis of the DCS one-stage Greedy Algorothm for Common Sparse Supports(2005-11-01) Baron, Dror; Duarte, Marco F.; Wakin, Michael; Sarvotham, Shriram; Baraniuk, Richard G.; Digital Signal Processing (http://dsp.rice.edu/)Analysis of the DCS one-stage Greedy Algorothm for Common Sparse SupportsItem Compressive sensing for signal ensembles(2010) Duarte, Marco F.; Baraniuk, Richard G.Compressive sensing (CS) is a new approach to simultaneous sensing and compression that enables a potentially large reduction in the sampling and computation costs for acquisition of signals having a sparse or compressible representation in some basis. The CS literature has focused almost exclusively on problems involving single signals in one or two dimensions. However, many important applications involve distributed networks or arrays of sensors. In other applications, the signal is inherently multidimensional and sensed progressively along a subset of its dimensions; examples include hyperspectral imaging and video acquisition. Initial work proposed joint sparsity models for signal ensembles that exploit both intra- and inter-signal correlation structures. Joint sparsity models enable a reduction in the total number of compressive measurements required by CS through the use of specially tailored recovery algorithms. This thesis reviews several different models for sparsity and compressibility of signal ensembles and multidimensional signals and proposes practical CS measurement schemes for these settings. For joint sparsity models, we evaluate the minimum number of measurements required under a recovery algorithm with combinatorial complexity. We also propose a framework for CS that uses a union-of-subspaces signal model. This framework leverages the structure present in certain sparse signals and can exploit both intra- and inter-signal correlations in signal ensembles. We formulate signal recovery algorithms that employ these new models to enable a reduction in the number of measurements required. Additionally, we propose the use of Kronecker product matrices as sparsity or compressibility bases for signal ensembles and multidimensional signals to jointly model all types of correlation present in the signal when each type of correlation can be expressed using sparsity. We compare the performance of standard global measurement ensembles, which act on all of the signal samples; partitioned measurements, which act on a partition of the signal with a given measurement depending only on a piece of the signal; and Kronecker product measurements, which can be implemented in distributed measurement settings. The Kronecker product formulation in the sparsity and measurement settings enables the derivation of analytical bounds for transform coding compression of signal ensembles and multidimensional signals. We also provide new theoretical results for performance of CS recovery when Kronecker product matrices are used, which in turn motivates new design criteria for distributed CS measurement schemes.Item Distributed Compressed Sensing of Jointly Sparse Signals(2005-11-01) Sarvotham, Shriram; Baron, Dror; Wakin, Michael; Duarte, Marco F.; Baraniuk, Richard G.; Digital Signal Processing (http://dsp.rice.edu/)Compressed sensing is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for reconstruction. In this paper we expand our theory for distributed compressed sensing (DCS) that enables new distributed coding algorithms for multi-signal ensembles that exploit both intra- and inter-signal correlation structures. The DCS theory rests on a new concept that we term the joint sparsity of a signal ensemble. We present a second new model for jointly sparse signals that allows for joint recovery of multiple signals from incoherent projections through simultaneous greedy pursuit algorithms. We also characterize theoretically and empirically the number of measurements per sensor required for accurate reconstruction.Item Method and apparatus for compressive imaging device(2014-09-30) Baraniuk, Richard G.; Baron, Dror Z.; Duarte, Marco F.; Kelly, Kevin F.; Lane, Courtney C.; Laska, Jason N.; Takhar, Dharmpal; Wakin, Michael B.; Rice University; United States Patent and Trademark OfficeA new digital image/video camera that directly acquires random projections of the incident light field without first collecting the pixels/voxels. In one preferred embodiment, the camera employs a digital micromirror array to perform optical calculations of linear projections of an image onto pseudorandom binary patterns. Its hallmarks include the ability to obtain an image with only a single detection element while measuring the image/video fewer times than the number of pixels or voxels—this can significantly reduce the computation required for image/video acquisition/encoding. Since the system features a single photon detector, it can also be adapted to image at wavelengths that are currently impossible with conventional CCD and CMOS imagers.Item Method and apparatus for compressive imaging device(2012-06-12) Baraniuk, Richard G.; Baron, Dror Z.; Duarte, Marco F.; Kelly, Kevin F.; Lane, Courtney C.; Laska, Jason N.; Takhar, Dharmpal; Wakin, Michael B.; Rice University; United States Patent and Trademark OfficeA new digital image/video camera that directly acquires random projections of the incident light field without first collecting the pixels/voxels. In one preferred embodiment, the camera employs a digital micromirror array to perform optical calculations of linear projections of an image onto pseudorandom binary patterns. Its hallmarks include the ability to obtain an image with only a single detection element while measuring the image/video fewer times than the number of pixels or voxels—this can significantly reduce the computation required for image/video acquisition/encoding. Since the system features a single photon detector, it can also be adapted to image at wavelengths that are currently impossible with conventional CCD and CMOS imagers.Item Method and apparatus for distributed compressed sensing(2009-03-31) Baraniuk, Richard G.; Baron, Dror Z.; Duarte, Marco F.; Sarvotham, Shriram; Wakin, Michael B.; Davenport, Mark A.; Rice University; United States Patent and Trademark OfficeA method for approximating a plurality of digital signals or images using compressed sensing. In a scheme where a common component xc of said plurality of digital signals or images an innovative component xi of each of said plurality of digital signals each are represented as a vector with m entries, the method comprises the steps of making a measurement yc, where yc comprises a vector with only ni entries, where ni is less than m, making a measurement yi for each of said correlated digital signals, where yi comprises a vector with only ni entries, where ni is less than m, and from each said innovation components yi, producing an approximate reconstruction of each m-vector xi using said common component yc and said innovative component yi.Item Method and apparatus for distributed compressed sensing(2007-09-18) Baraniuk, Richard G.; Baron, Dror Z.; Duarte, Marco F.; Sarvotham, Shriram; Wakin, Michael B.; Davenport, Mark A.; Rice University; United States Patent and Trademark OfficeA method for approximating a plurality of digital signals or images using compressed sensing. In a scheme where a common component xc of said plurality of digital signals or images an innovative component xi of each of said plurality of digital signals each are represented as a vector with m entries, the method comprises the steps of making a measurement yc, where yc comprises a vector with only ni entries, where ni is less than m, making a measurement yi for each of said correlated digital signals, where yi comprises a vector with only ni entries, where ni is less than m, and from each said innovation components yi, producing an approximate reconstruction of each m-vector xi using said common component yc and said innovative component yi.Item Method and apparatus for on-line compressed sensing(2014-04-01) Baraniuk, Richard G.; Baron, Dror Z.; Duarte, Marco F.; Elnozahi, Mohamed; Wakin, Michael B.; Davenport, Mark A.; Laska, Jason N.; Tropp, Joel A.; Massoud, Yehia; Kirolos, Sami; Ragheb, Tamer; Rice University; United States Patent and Trademark OfficeA typical data acquisition system takes periodic samples of a signal, image, or other data, often at the so-called Nyquist/Shannon sampling rate of two times the data bandwidth in order to ensure that no information is lost. In applications involving wideband signals, the Nyquist/Shannon sampling rate is very high, even though the signals may have a simple underlying structure. Recent developments in mathematics and signal processing have uncovered a solution to this Nyquist/Shannon sampling rate bottleneck for signals that are sparse or compressible in some representation. We demonstrate and reduce to practice methods to extract information directly from an analog or digital signal based on altering our notion of sampling to replace uniform time samples with more general linear functionals. One embodiment of our invention is a low-rate analog-to-information converter that can replace the high-rate analog-to-digital converter in certain applications involving wideband signals. Another embodiment is an encoding scheme for wideband discrete-time signals that condenses their information content.Item Method and apparatus for signal detection- classification and estimation from compressive measurements(2013-07-09) Baraniuk, Richard G.; Duarte, Marco F.; Davenport, Mark A.; Wakin, Michael B.; Rice University; United States Patent and Trademark OfficeThe recently introduced theory of Compressive Sensing (CS) enables a new method for signal recovery from incomplete information (a reduced set of “compressive” linear measurements), based on the assumption that the signal is sparse in some dictionary. Such compressive measurement schemes are desirable in practice for reducing the costs of signal acquisition, storage, and processing. However, the current CS framework considers only a certain task (signal recovery) and only in a certain model setting (sparsity). We show that compressive measurements are in fact information scalable, allowing one to answer a broad spectrum of questions about a signal when provided only with a reduced set of compressive measurements. These questions range from complete signal recovery at one extreme down to a simple binary detection decision at the other. (Questions in between include, for example, estimation and classification.) We provide techniques such as a “compressive matched filter” for answering several of these questions given the available measurements, often without needing to first reconstruct the signal. In many cases, these techniques can succeed with far fewer measurements than would be required for full signal recovery, and such techniques can also be computationally more efficient. Based on additional mathematical insight, we discuss information scalable algorithms in several model settings, including sparsity (as in CS), but also in parametric or manifold-based settings and in model-free settings for generic statements of detection, classification, and estimation problems.Item Multiscale random projections for compressive classification(2007-09-01) Duarte, Marco F.; Davenport, Mark A.; Wakin, Michael B.; Laska, Jason N.; Takhar, Dharmpal; Kelly, Kevin F.; Baraniuk, Richard G.We propose a framework for exploiting dimension-reducing random projections in detection and classification problems. Our approach is based on the generalized likelihood ratio test; in the case of image classification, it exploits the fact that a set of images of a fixed scene under varying articulation parameters forms a low-dimensional, nonlinear manifold. Exploiting recent results showing that random projections stably embed a smooth manifold in a lower-dimensional space, we develop the multiscale smashed filter as a compressive analog of the familiar matched filter classifier. In a practical target classification problem using a single-pixel camera that directly acquires compressive image projections, we achieve high classification rates using many fewer measurements than the dimensionality of the images.Item Random Filters for Compressive Sampling and Reconstruction(2006-05-01) Baraniuk, Richard G.; Wakin, Michael; Duarte, Marco F.; Tropp, Joel A.; Baron, Dror; Digital Signal Processing (http://dsp.rice.edu/)We propose and study a new technique for efficiently acquiring and reconstructing signals based on convolution with a fixed FIR filter having random taps. The method is designed for sparse and compressible signals, i.e., ones that are well approximated by a short linear combination of vectors from an orthonormal basis. Signal reconstruction involves a non-linear Orthogonal Matching Pursuit algorithm that we implement efficiently by exploiting the nonadaptive, time-invariant structure of the measurement process. While simpler and more efficient than other random acquisition techniques like Compressed Sensing, random filtering is sufficiently generic to summarize many types of compressible signals and generalizes to streaming and continuous-time signals. Extensive numerical experiments demonstrate its efficacy for acquiring and reconstructing signals sparse in the time, frequency, and wavelet domains, as well as piecewise smooth signals and Poisson processes.Item Single-pixel imaging via compressive sampling(2008-03-01) Duarte, Marco F.; Davenport, Mark A.; Takhar, Dharmpal; Laska, Jason N.; Sun, Ting; Kelly, Kevin F.; Baraniuk, Richard G.Item The smashed filter for compressive classification and target recognition(2007-01-01) Davenport, Mark A.; Duarte, Marco F.; Wakin, Michael B.; Laska, Jason N.; Takhar, Dharmpal; Kelly, Kevin F.; Baraniuk, Richard G.The theory of compressive sensing (CS) enables the reconstruction of a sparse or compressible image or signal from a small set of linear, non-adaptive (even random) projections. However, in many applications, including object and target recognition, we are ultimately interested in making a decision about an image rather than computing a reconstruction. We propose here a framework for compressive classification that operates directly on the compressive measurements without first reconstructing the image. We dub the resulting dimensionally reduced matched filter the smashed filter. The first part of the theory maps traditional maximum likelihood hypothesis testing into the compressive domain; we find that the number of measurements required for a given classification performance level does not depend on the sparsity or compressibility of the images but only on the noise level. The second part of the theory applies the generalized maximum likelihood method to deal with unknown transformations such as the translation, scale, or viewing angle of a target object. We exploit the fact the set of transformed images forms a low-dimensional, nonlinear manifold in the high-dimensional image space. We find that the number of measurements required for a given classification performance level grows linearly in the dimensionality of the manifold but only logarithmically in the number of pixels/samples and image classes. Using both simulations and measurements from a new single-pixel compressive camera, we demonstrate the effectiveness of the smashed filter for target classification using very few measurements.Item Sparse Signal Detection from Incoherent Projections(2006-05-01) Davenport, Mark A.; Wakin, Michael B.; Duarte, Marco F.; Baraniuk, Richard G.; Digital Signal Processing (http://dsp.rice.edu/)The recently introduced theory of Compressed Sensing (CS) enables the reconstruction or approximation of sparse or compressible signals from a small set of incoherent projections; often the number of projections can be much smaller than the number of Nyquist rate samples. In this paper, we show that the CS framework is information scalable to a wide range of statistical inference tasks. In particular, we demonstrate how CS principles can solve signal detection problems given incoherent measurements without ever reconstructing the signals involved. We specifically study the case of signal dection in strong inference and noise and propose an Incoherent Detection and Estimation Algorithm (IDEA) based on Matching Pursuit. The number of measurements and computations necessary for successful detection using IDEA is significantly lower than that necessary for successful reconstruction. Simulations show that IDEA is very resilient to strong interference, additive noise, and measurement quantization. When combined with random measurements, IDEA is applicable to a wide range of different signal classes.Item Universal Distributed Sensing via Random Projections(2006-04-01) Wakin, Michael; Duarte, Marco F.; Baraniuk, Richard G.; Baron, Dror; Digital Signal Processing (http://dsp.rice.edu/)This paper develops a new framework for distributed coding and compression in sensor networks based on distributed compressed sensing (DCS). DCS exploits both intra-signal and inter-signal correlations through the concept of joint sparsity; just a few measurements of a jointly sparse signal ensemble contain enough information for reconstruction. DCS is well-suited for sensor network applications, thanks to its simplicity, universality, computational asymmetry, tolerance to quantization and noise, robustness to measurement loss, and scalability. It also requires absolutely no inter- sensor collaboration. We apply our framework to several real world datasets to validate the framework.