Browsing by Author "Doerr, Stefan"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Machine learning coarse-grained potentials of protein thermodynamics(Springer Nature, 2023) Majewski, Maciej; Pérez, Adrià; Thölke, Philipp; Doerr, Stefan; Charron, Nicholas E.; Giorgino, Toni; Husic, Brooke E.; Clementi, Cecilia; Noé, Frank; De Fabritiis, Gianni; Center for Theoretical Biological PhysicsA generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.