Browsing by Author "Di Pierro, Michele"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Anomalous diffusion, spatial coherence, and viscoelasticity from the energy landscape of human chromosomes(National Academy of Sciences of the United States of America, 2018) Di Pierro, Michele; Potoyan, Davit A.; Wolynes, Peter G.; Onuchic, José NelsonThe nucleus of a eukaryotic cell is a nonequilibrium system where chromatin is subjected to active processes that continuously rearrange it over the cell's life cycle. Tracking the motion of chromosomal loci provides information about the organization of the genome and the physical processes shaping that organization. Optical experiments report that loci move with subdiffusive dynamics and that there is spatially coherent motion of the chromatin. We recently showed that it is possible to predict the 3D architecture of genomes through a physical model for chromosomes that accounts for the biochemical interactions mediated by proteins and regulated by epigenetic markers through a transferable energy landscape. Here, we study the temporal dynamics generated by this quasi-equilibrium energy landscape assuming Langevin dynamics at an effective temperature. Using molecular dynamics simulations of two interacting human chromosomes, we show that the very same interactions that account for genome architecture naturally reproduce the spatial coherence, viscoelasticity, and the subdiffusive behavior of the motion in interphase chromosomes as observed in numerous experiments. The agreement between theory and experiments suggests that even if active processes are involved, an effective quasi-equilibrium landscape model can largely mimic their dynamical effects.Item Chromatin alternates between A and B compartments at kilobase scale for subgenic organization(Springer Nature, 2023) Harris, Hannah L.; Gu, Huiya; Olshansky, Moshe; Wang, Ailun; Farabella, Irene; Eliaz, Yossi; Kalluchi, Achyuth; Krishna, Akshay; Jacobs, Mozes; Cauer, Gesine; Pham, Melanie; Rao, Suhas S. P.; Dudchenko, Olga; Omer, Arina; Mohajeri, Kiana; Kim, Sungjae; Nichols, Michael H.; Davis, Eric S.; Gkountaroulis, Dimos; Udupa, Devika; Aiden, Aviva Presser; Corces, Victor G.; Phanstiel, Douglas H.; Noble, William Stafford; Nir, Guy; Di Pierro, Michele; Seo, Jeong-Sun; Talkowski, Michael E.; Aiden, Erez Lieberman; Rowley, M. Jordan; Center for Theoretical Biological PhysicsNuclear compartments are prominent features of 3D chromatin organization, but sequencing depth limitations have impeded investigation at ultra fine-scale. CTCF loops are generally studied at a finer scale, but the impact of looping on proximal interactions remains enigmatic. Here, we critically examine nuclear compartments and CTCF loop-proximal interactions using a combination of in situ Hi-C at unparalleled depth, algorithm development, and biophysical modeling. Producing a large Hi-C map with 33 billion contacts in conjunction with an algorithm for performing principal component analysis on sparse, super massive matrices (POSSUMM), we resolve compartments to 500 bp. Our results demonstrate that essentially all active promoters and distal enhancers localize in the A compartment, even when flanking sequences do not. Furthermore, we find that the TSS and TTS of paused genes are often segregated into separate compartments. We then identify diffuse interactions that radiate from CTCF loop anchors, which correlate with strong enhancer-promoter interactions and proximal transcription. We also find that these diffuse interactions depend on CTCF’s RNA binding domains. In this work, we demonstrate features of fine-scale chromatin organization consistent with a revised model in which compartments are more precise than commonly thought while CTCF loops are more protracted.Item De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture(National Academy of Sciences, 2017) Di Pierro, Michele; Cheng, Ryan R.; Aiden, Erez Lieberman; Wolynes, Peter G.; Onuchic, José N.; Center for Theoretical Biological PhysicsInside the cell nucleus, genomes fold into organized structures that are characteristic of cell type. Here, we show that this chromatin architecture can be predicted de novo using epigenetic data derived from chromatin immunoprecipitation-sequencing (ChIP-Seq). We exploit the idea that chromosomes encode a 1D sequence of chromatin structural types. Interactions between these chromatin types determine the 3D structural ensemble of chromosomes through a process similar to phase separation. First, a neural network is used to infer the relation between the epigenetic marks present at a locus, as assayed by ChIP-Seq, and the genomic compartment in which those loci reside, as measured by DNA-DNA proximity ligation (Hi-C). Next, types inferred from this neural network are used as an input to an energy landscape model for chromatin organization [Minimal Chromatin Model (MiChroM)] to generate an ensemble of 3D chromosome conformations at a resolution of 50 kilobases (kb). After training the model, dubbed Maximum Entropy Genomic Annotation from Biomarkers Associated to Structural Ensembles (MEGABASE), on odd-numbered chromosomes, we predict the sequences of chromatin types and the subsequent 3D conformational ensembles for the even chromosomes. We validate these structural ensembles by using ChIP-Seq tracks alone to predict Hi-C maps, as well as distances measured using 3D fluorescence in situ hybridization (FISH) experiments. Both sets of experiments support the hypothesis of phase separation being the driving process behind compartmentalization. These findings strongly suggest that epigenetic marking patterns encode sufficient information to determine the global architecture of chromosomes and that de novo structure prediction for whole genomes may be increasingly possible.Item Exploring chromosomal structural heterogeneity across multiple cell lines(eLife, 2020) Cheng, Ryan R.; Contessoto, Vinícius G.; Aiden, Erez Lieberman; Wolynes, Peter G.; Di Pierro, Michele; Onuchic, José Nelson; Center for Theoretical Biological PhysicsUsing computer simulations, we generate cell-specific 3D chromosomal structures and compare them to recently published chromatin structures obtained through microscopy. We demonstrate using machine learning and polymer physics simulations that epigenetic information can be used to predict the structural ensembles of multiple human cell lines. Theory predicts that chromosome structures are fluid and can only be described by an ensemble, which is consistent with the observation that chromosomes exhibit no unique fold. Nevertheless, our analysis of both structures from simulation and microscopy reveals that short segments of chromatin make two-state transitions between closed conformations and open dumbbell conformations. Finally, we study the conformational changes associated with the switching of genomic compartments observed in human cell lines. The formation of genomic compartments resembles hydrophobic collapse in protein folding, with the aggregation of denser and predominantly inactive chromatin driving the positioning of active chromatin toward the surface of individual chromosomal territories.Item Three-dimensional genome architecture persists in a 52,000-year-old woolly mammoth skin sample(Elsevier, 2024) Sandoval-Velasco, Marcela; Dudchenko, Olga; Rodríguez, Juan Antonio; Pérez Estrada, Cynthia; Dehasque, Marianne; Fontsere, Claudia; Mak, Sarah S. T.; Khan, Ruqayya; Contessoto, Vinícius G.; Oliveira Junior, Antonio B.; Kalluchi, Achyuth; Zubillaga Herrera, Bernardo J.; Jeong, Jiyun; Roy, Renata P.; Christopher, Ishawnia; Weisz, David; Omer, Arina D.; Batra, Sanjit S.; Shamim, Muhammad S.; Durand, Neva C.; O’Connell, Brendan; Roca, Alfred L.; Plikus, Maksim V.; Kusliy, Mariya A.; Romanenko, Svetlana A.; Lemskaya, Natalya A.; Serdyukova, Natalya A.; Modina, Svetlana A.; Perelman, Polina L.; Kizilova, Elena A.; Baiborodin, Sergei I.; Rubtsov, Nikolai B.; Machol, Gur; Rath, Krisha; Mahajan, Ragini; Kaur, Parwinder; Gnirke, Andreas; Garcia-Treviño, Isabel; Coke, Rob; Flanagan, Joseph P.; Pletch, Kelcie; Ruiz-Herrera, Aurora; Plotnikov, Valerii; Pavlov, Innokentiy S.; Pavlova, Naryya I.; Protopopov, Albert V.; Di Pierro, Michele; Graphodatsky, Alexander S.; Lander, Eric S.; Rowley, M. Jordan; Wolynes, Peter G.; Onuchic, José N.; Dalén, Love; Marti-Renom, Marc A.; Gilbert, M. Thomas P.; Aiden, Erez Lieberman; Center for Theoretical Biological PhysicsAnalyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth’s death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.