Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Dennis, Troy A"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    EMG Control of an Upper-Limb Rehabilitation Exoskeleton for SCI Affected Users
    (2018-04-09) Dennis, Troy A; O'Malley, Marcia K
    Robotic rehabilitation for individuals with spinal cord injury (SCI) has been shown to be most effective when the user is motivated and mentally engaged in the execution of therapeutic exercises. Consequently, designers of the human-robot interface are challenged with developing control schemes that can detect user intent and maximize their engagement. Electromyography (EMG) is a promising technique to address this challenge. In this thesis, an EMG control scheme for an upper-limb exoskeleton, the MAHI Exo-II, is designed and tested with a population of able-bodied users, as well as SCI affected subjects. The presented scheme utilizes pattern recognition techniques to monitor the user's muscle activation patterns and select their intended direction of motion in single or multiple degree-of-freedom (DoF) movements of the elbow and wrist joints. The results presented demonstrate that the control scheme was simple to use, highly adaptive across a range of subjects, and accurate in directional classification.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892