Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Decuzzi, Paolo"

Now showing 1 - 7 of 7
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Bayesian hierarchical model for maximizing the vascular adhesion of nanoparticles
    (Springer, 2014) Fronczyk, Kassandra; Guindani, Michele; Vannucci, Marina; Palange, Annalisa; Decuzzi, Paolo
    The complex vascular dynamics and wall deposition of systemically injected nanoparticles is regulated by their geometrical properties (size, shape) and biophysical parameters (ligand–receptor bond type and surface density, local shear rates). Although sophisticated computational models have been developed to capture the vascular behavior of nanoparticles, it is increasingly recognized that purely deterministic approaches, where the governing parameters are known a priori and conclusively describe behaviors based on physical characteristics, may be too restrictive to accurately reflect natural processes. Here, a novel computational framework is proposed by coupling the physics dictating the vascular adhesion of nanoparticles with a stochastic model. In particular, two governing parameters (i.e. the ligand–receptor bond length and the ligand surface density on the nanoparticle) are treated as two stochastic quantities, whose values are not fixed a priori but would rather range in defined intervals with a certain probability. This approach is used to predict the deposition of spherical nanoparticles with different radii, ranging from 750 to 6,000 nm, in a parallel plate flow chamber under different flow conditions, with a shear rate ranging from 50 to 90  s−1 . It is demonstrated that the resulting stochastic model can predict the experimental data more accurately than the original deterministic model. This approach allows one to increase the predictive power of mathematical models of any natural process by accounting for the experimental and intrinsic biological uncertainties.
  • Loading...
    Thumbnail Image
    Item
    Carbon and Silicon Nanomaterials for Medical Nanotechnology Applications
    (2015-05-18) Gizzatov, Ayrat; Wilson, Lon J.; Tour, James M; Vajtai, Robert; Decuzzi, Paolo
    This dissertation focuses on the development of sp2-carbon- and silicon-based nanomaterials for medical diagnostics and in vivo magnetic field-guided delivery applications. To realize these applications, especially for the development of new in vivo Magnetic Resonance Imaging (MRI) contrast agents (CAs), high solubility in aqueous media is required. Therefore, this work first details development of a new non-covalent method for the preparation of stable aqueous colloidal solution of surfactant-free sp2-carbon nanostructures, as well as a second rapid covalent functionalization procedure to produce highly-water-dispersible honey-comb carbon nanostructures (ca. 50 mg/mL). Next, highly-water-dispersible graphene nanoribbons and Gd3+ ions were together used to produce a high-performance MRI CA for T1- and T2- weighted imaging. In terms of its relaxivity (r1,2) values, this new CA material outperforms currently-available clinical CAs by up to 16 times for r1 and 21 times for r2. Finally, sub-micrometer discoidal magnetic nanoconstructs have been produced and studied for applications for in vivo magnetic-field-guided delivery into cancerous tumors. The nanoconstructs were produced by confining ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) within mesoporous silicon which produced T2-weighted MRI CA performance 2.5 times greater than for the free USPIOs themselves. Moreover, these nanoconstructs, under the influence of an external magnetic field, collectively cooperated via a new mechanism to amplify accumulation in melanoma tumors of mice. Overall, the results of this dissertation could aid in the rapid translation of these nanotechnologies into the clinic, while, hopefully, also serving as an inspiration for continued research into the field of Medical Nanotechnology.
  • Loading...
    Thumbnail Image
    Item
    Enhanced MRI relaxivity of aquated Gd3+ᅠions by carboxyphenylated water-dispersed graphene nanoribbons
    (Royal Society of Chemistry, 2014) Gizzatov, Ayrat; Keshishian, Vazrik; Guven, Adem; Dimiev, Ayrat M.; Qu, Feifei; Muthupillai, Raja; Decuzzi, Paolo; Bryant, Robert G.; Tour, James M.; Wilson, Lon J.; Richard E. Smalley Institute for Nanoscale Science and Technology
    The present study demonstrates that highly water-dispersed graphene nanoribbons dispersed by carboxyphenylated substituents and conjugated to aquated Gd3+ᅠions can serve as a high-performance contrast agent (CA) for applications inᅠT1- andᅠT2-weighted magnetic resonance imaging (MRI) with relaxivity (r1,2) values outperforming currently-available clinical CAs by up to 16 times forᅠr1ᅠand 21 times forᅠr2.
  • Loading...
    Thumbnail Image
    Item
    Enhanced MRI relaxivity of Gd3+-based contrast agents geometrically confined within porous nanoconstructs
    (Wiley, 2012) Sethi, Richa; Ananta, Jeyarama S.; Karmonik, Christof; Zhong, Meng; Fung, Steve H.; Liu, Xuewu; Li, King; Ferrari, Mauro; Wilson, Lon J.; Decuzzi, Paolo; Smalley Institute for Nanoscale Science and Technology; Center for Biological and Environmental Nanotechnology
    Gadolinium chelates, which are currently approved for clinical MRI use, provide relaxivities well below their theoretical limit, and they also lack tissue specificity. Recently, the geometrical confinement of Gd3+-based contrast agents (CAs) within porous structures has been proposed as a novel, alternative strategy to improve relaxivity without chemical modification of the CA. Here, we have characterized and optimized the performance of MRI nanoconstructs obtained by loading [Gd(DTPA)(H2O)]2− (Magnevist®) into the pores of injectable mesoporous silicon particles. Nanoconstructs with three different pore sizes were studied, and at 60 MHz, they exhibited longitudinal relaxivities of ~24 m m−1 s−1 for 5–10 nm pores and ~10 m m−1 s−1 for 30 – 40 nm pores. No enhancement in relaxivity was observed for larger pores sizes. Using an outer-sphere compound, [GdTTHA]3−, and mathematical modeling, it was demonstrated that the relaxivity enhancement is due to the increase in rotational correlation times (CA adsorbed on the pore walls) and diffusion correlation times (reduced mobility of the water molecules), as the pore sizes decreases. It was also observed that extensive CA adsorption on the outer surface of the silicon particles negates the advantages offered by nanoscale confinement. Upon incubation with HeLa cells, the nanoconstructs did not demonstrate significant cytotoxicity for up to 3 days post incubation, at different particle/cell ratios. In addition, the nanoconstructs showed complete degradation after 24 h of continuous agitation in phosphate-buffered saline. These data support and confirm the hypothesis that the geometrical confinement of Gd3+-chelate compounds into porous structures offers MRI nanoconstructs with enhanced relaxivity (up to 6 times for [Gd(DTPA)(H2O)]2−, and 4 times for [GdTTHA]3−) and, potentially, improved stability, reduced toxicity and tissue specificity.
  • Loading...
    Thumbnail Image
    Item
    Geometrical confinement of Gd(DOTA) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer
    (Elsevier, 2014) Gizzatov, Ayrat; Stigliano, Cinzia; Ananta, Jeyerama S.; Sethi, Richa; Xu, Rong; Guven, Adem; Ramirez, Maricela; Shen, Haifa; Sood, Anil; Ferrari, Mauro; Wilson, Lon J.; Liu, Xuewu; Decuzzi, Paolo; Smalley Institute for Nanoscale Science and Technology
    Porous silicon has been used for the delivery of therapeutic and imaging agents in several biomedical applications. Here, mesoporous silicon nanoconstructs (SiMPs) with a discoidal shape and a sub-micrometer size (1,000 × 400 nm) have been conjugated with gadolinium-tetraazacyclododecane tetraacetic acid Gd(DOTA) molecules and proposed as contrast agents for Magnetic Resonance Imaging. The surface of the SiMPs with different porosities – small pore (SP: ~ 5 nm) and huge pore (HP: ~ 40 nm) – and of bulk, non-porous silica beads (1,000 nm in diameter) have been modified with covalently attached (3-aminopropyl)triethoxysilane (APTES) groups, conjugated with DOTA molecules, and reacted with an aqueous solution of GdCl3. The resulting Gd(DOTA) molecules confined within the small pores of the Gd-SiMPs achieve longitudinal relaxivities r1 of ~ 17 (mM·s)−1, which is 4 times greater than for free Gd(DOTA). This enhancement is ascribed to the confinement and stable chelation of Gd(DOTA) molecules within the SiMP mesoporous matrix. The resulting nanoconstructs possess no cytotoxicity and accumulate in ovarian tumors up to 2% of the injected dose per gram tissue, upon tail vein injection. All together this data suggests that Gd-SiMPs could be efficiently used for MR vascular imaging in cancer and other diseases.
  • Loading...
    Thumbnail Image
    Item
    Hierarchically Structured Magnetic Nanoconstructs with Enhanced Relaxivity and Cooperative Tumor Accumulation
    (Wiley, 2014) Gizzatov, Ayrat; Key, Jaehong; Aryal, Santosh; Ananta, Jeyarama; Cervadoro, Antonio; Palange, Anna Lisa; Fasano, Matteo; Stigliano, Cinzia; Zhong, Meng; Di Mascolo, Daniele; Guven, Adem; Chiavazzo, Eliodoro; Asinari, Pietro; Liu, Xuewu; Ferrari, Mauro; Wilson, Lon J.; Decuzzi, Paolo; R.E. Smalley Institute for Nanoscale Science and Technology
    Iron oxide nanoparticles are formidable multifunctional systems capable of contrast enhancement in magnetic resonance imaging, guidance under remote fields, heat generation, and biodegradation. Yet, this potential is underutilized in that each function manifests at different nanoparticle sizes. Here, sub-micrometer discoidal magnetic nanoconstructs are realized by confining 5 nm ultra-small super-paramagnetic iron oxide nanoparticles (USPIOs) within two different mesoporous structures, made out of silicon and polymers. These nanoconstructs exhibit transversal relaxivities up to ≈10 times (r 2 ≈ 835 mm −1 s−1) higher than conventional USPIOs and, under external magnetic fields, collectively cooperate to amplify tumor accumulation. The boost in r 2 relaxivity arises from the formation of mesoscopic USPIO clusters within the porous matrix, inducing a local reduction in water molecule mobility as demonstrated via molecular dynamics simulations. The cooperative accumulation under static magnetic field derives from the large amount of iron that can be loaded per nanoconstuct (up to ≈65 fg) and the consequential generation of significant inter-particle magnetic dipole interactions. In tumor bearing mice, the silicon-based nanoconstructs provide MRI contrast enhancement at much smaller doses of iron (≈0.5 mg of Fe kg−1 animal) as compared to current practice.
  • Loading...
    Thumbnail Image
    Item
    Nanosystems: From their design to characterization as advanced MRI contrast agents
    (2013-07-29) Sethi, Richa; Wilson, Lon J.; McDevitt, John T.; Richards-Kortum, Rebecca Rae; Decuzzi, Paolo
    Ultra-short single-walled carbon nanotubes (US-tubes) have been previously shown to be efficient carriers of imaging agents. In particular, gadonanotubes (GNTs) synthesized by loading and nanoscale confinement of Gd3+ ions within US-tubes have been established as high-performance MRI contrast agents (CAs) with efficiencies 40 to 90 times greater than the current clinical CAs. Using nuclear magnetic resonance dispersion (NMRD) and electron spin resonance (ESR) techniques, this work discusses the origin of the magnetic and proton relaxation behavior in MRI of the GNTs and related structures at low magnetic fields. The likely causes for the observed paramagnetism for these materials are explored and their effect on water proton relaxation is discussed. In addition, Gd3+ chelates, which are currently approved for clinical MRI use, provide relaxivities (or contrast enhancement) well below their theoretical limit, and they also lack tissue specificity. In this dissertation, using vascularly injectable mesoporous silicon nanoparticles (SiMPs), general methods for increasing the efficiency of Gd3+-based MRI CAs are described. Two different strategies have been successfully tested where Gd3+ chelates are either geometrically confined within the pores of SiMPs or covalently attached to the surface of SiMPs. For both the approaches, SiMPs with different pore sizes have been used to generate a dominant role in the resulting relaxivity. The nanoconstructs designed using these approaches have been shown to produce relaxivities that are many-fold greater than the free CAs in solution. This enhancement is attributed to the optimization of the molecular parameters that govern relaxivity. Co-loading the pores with a Gd3+-based CA and a fluorescently-labeled antibody has shown the potential of SiMP nanoconstructs as multimodal agents. The strategies outlined in this dissertation are general and can be successfully applied to any imaging agent and porous nanosystem. In summary, this work highlights two key outcomes. First, it provides a better understanding of the magnetic and MRI behavior of the GNTs. Second, it demonstrates that geometrical confinement of CAs and covalent functionalization of nanoparticles are universal strategies for enhancing the performance of Gd3+-based CAs.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892