Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Decklever, Jacob"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Nanocomposite Material Properties Estimation and Fracture Analysis via Peridynamics and Monte Carlo Simulation
    (2015-04-23) Decklever, Jacob; Spanos, Pol D.; Meade, Andrew J; Padgett, Jamie E
    This thesis presents a numerical model for the estimation of nanocomposite material properties and fracture analysis. A non-uniform peridynamic grid is utilized to simulate the nanocomposites along with Monte Carlo simulation which models single walled carbon nanotube (SWCNT) distribution, dispersion, curvature, orientation, length, and diameter. First, a random microstructure is generated from the user inputs consisting of a polymer matrix and SWCNTs. The system is then solved via peridynamic techniques and post-processed to obtain the bulk mechanical properties. Utilizing Monte Carlo simulations, the mean effective modulus for a given set of input parameters is derived. Fracture analysis is performed using a single realization and quasi-static loading conditions via peridynamics allowing simultaneous and spontaneous propagating fractures. The model is validated against experimental data available in the open literature.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892