Browsing by Author "Day, James M. D."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Petrogenesis of the Dar al Gani (DaG) 1.1 Ma ejection-paired olivine-phyric shergottites and implications for 470 Ma Martian volcanism(Wiley, 2023) Aucamp, Tarryn; Howarth, Geoffrey H.; Peel, Chad J.; Costin, Gelu; Day, James M. D.; le Roux, Petrus; Scott, James M.; Greshake, Ansgar; Bartoschewitz, RainerThe Dar al Gani (DaG) olivine-phyric shergottites share mineralogical and geochemical characteristics, which confirm that these meteorites are derived from a single source. Bulk trace elements (La/Yb—0.12), in situ maskelynite 87Sr/86Sr ( 0.7014) and redox estimates (FMQ −2) indicate derivation from a depleted, reduced mantle reservoir; identical to all 470 Ma shergottites ejected at 1.1 Ma. The DaG shergottites have been variably affected by terrestrial alteration, which precipitated carbonate along fractures and modified bulk-rock fluid mobile (e.g., Ba) elements. Nonetheless, sufficient data are available to construct a multi-stage formation model for the DaG shergottites and other 1.1 Ma ejection-paired shergottites that erupted at 470 Ma. First, partial melting of a depleted mantle source occurred at 1540 ± 20°C and 1.2 ± 0.1 GPa, equivalent to > 100 km depth. Then, initial crystallization in a staging chamber at 85 km depth at the crust–mantle boundary took place, followed by magma evolution and variable incorporation of antecrystic olivine ± orthopyroxene. Subsequently, crystallization of olivine phenocrysts and re-equilibration of olivine antecrysts occurred within an ascending magma. Finally, magmas with variable crystal loads erupted at the surface, where varied cooling rates produced a range of groundmass textures. This model is similar to picritic flood basalt magmas erupted on Earth.