Browsing by Author "Cui, Yao"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Molecular Plasmonics(2016-12-16) Cui, Yao; Nordlander, Peter; Halas, NaomiGraphene supports surface plasmons that have been observed to be both electrically and geometrically tunable in the midto far-infrared spectral regions. In particular, it has been demonstrated that graphene plasmons can be tuned across a wide spectral range spanning from the mid-infrared to the terahertz. The identification of a general class of plasmonic excitations in systems containing only a few dozen atoms permits us to extend this versatility into the visible and ultraviolet. As appealing as this extension might be for active nanoscale manipulation of visible light, its realization constitutes a formidable technical challenge. We experimentally demonstrate the existence of molecular plasmon resonances in the visible for ionized polycyclic aromatic hydrocarbons (PAHs), which we reversibly switch by adding, then removing, a single electron from the molecule. The charged PAHs display intense absorption in the visible regime with electrical and geometrical tunability analogous to the plasmonic resonances of much larger nanographene systems. Finally, we also use the switchable molecular plasmon in PAHs to demonstrate a proof-of-concept low-voltage electrochromic device.Item Proper and improper zero energy modes in Hartree-Fock theory and their relevance for symmetry breaking and restoration(American Institute of Physics, 2013) Cui, Yao; Bulik, Ireneusz W.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Scuseria, Gustavo E.We study the spectra of the molecular orbital Hessian (stability matrix) and random-phase approximation (RPA) Hamiltonian of broken-symmetry Hartree-Fock solutions, focusing on zero eigenvalue modes. After all negative eigenvalues are removed from the Hessian by following their eigenvectors downhill, one is left with only positive and zero eigenvalues. Zero modes correspond to orbital rotations with no restoring force. These rotations determine states in the Goldstone manifold, which originates from a spontaneously broken continuous symmetry in the wave function. Zero modes can be classified as improper or proper according to their different mathematical and physical properties. Improper modes arise from symmetry breaking and their restoration always lowers the energy. Proper modes, on the other hand, correspond to degeneracies of the wave function, and their symmetry restoration does not necessarily lower the energy. We discuss how the RPA Hamiltonian distinguishes between proper and improper modes by doubling the number of zero eigenvalues associated with the latter. Proper modes in the Hessian always appear in pairs which do not double in RPA. We present several pedagogical cases exemplifying the above statements. The relevance of these results for projected Hartree-Fock methods is also addressed.