Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Crank, Erik T."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Parameter-passing and the lambda calculus
    (1991) Crank, Erik T.; Felleisen, Matthias
    The choice of a parameter-passing technique is an important decision in the design of a high-level programming language. To clarify some of the semantic aspects of the decision, we develop, analyze, and compare modifications of the $\lambda$-calculus for the most common parameter-passing techniques. More specifically, for each parameter-passing technique we provide (1) a program rewriting semantics for a language with side-effects and first-class procedures based on the respective parameter-passing technique; (2) an equational theory derived from the rewriting semantics; (3) a formal analysis of the correspondence between the calculus and the semantics; and (4) a strong normalization theorem for the largest possible imperative fragment of the theory. A comparison of the various systems reveals that Algol's call-by-name indeed satisfies the well-known $\beta$ rule of the original $\lambda$-calculus, but at the cost of complicated axioms for the imperative part of the theory. The simplest and most appealing axiom system appears to be the one for a call-by-value language with reference cells as first-class values.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892