Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cossairt, Oliver"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    CS-ToF: High-resolution compressive time-of-flight imaging
    (Optical Society of America, 2017) Li, Fengqiang; Chen, Huaijin; Pediredla, Adithya; Yeh, Chiakai; He, Kuan; Veeraraghavan, Ashok; Cossairt, Oliver
    Three-dimensional imaging using Time-of-flight (ToF) sensors is rapidly gaining widespread adoption in many applications due to their cost effectiveness, simplicity, and compact size. However, the current generation of ToF cameras suffers from low spatial resolution due to physical fabrication limitations. In this paper, we propose CS-ToF, an imaging architecture to achieve high spatial resolution ToF imaging via optical multiplexing and compressive sensing. Our approach is based on the observation that, while depth is non-linearly related to ToF pixel measurements, a phasor representation of captured images results in a linear image formation model. We utilize this property to develop a CS-based technique that is used to recover high resolution 3D images. Based on the proposed architecture, we developed a prototype 1-megapixel compressive ToF camera that achieves as much as 4× improvement in spatial resolution and 3× improvement for natural scenes. We believe that our proposed CS-ToF architecture provides a simple and low-cost solution to improve the spatial resolution of ToF and related sensors.
  • Loading...
    Thumbnail Image
    Item
    Reconstructing rooms using photon echoes: A plane based model and reconstruction algorithm for looking around the corner
    (IEEE, 2017) Pediredla, Adithya Kumar; Buttafava, Mauro; Tosi, Alberto; Cossairt, Oliver; Veeraraghavan, Ashok
    Can we reconstruct the entire internal shape of a room if all we can directly observe is a small portion of one internal wall, presumably through a window in the room? While conventional wisdom may indicate that this is not possible, motivated by recent work on `looking around corners', we show that one can exploit light echoes to reconstruct the internal shape of hidden rooms. Existing techniques for looking around the corner using transient images model the hidden volume using voxels and try to explain the captured transient response as the sum of the transient responses obtained from individual voxels. Such a technique inherently suffers from challenges with regards to low signal to background ratios (SBR) and has difficulty scaling to larger volumes. In contrast, in this paper, we argue for using a plane-based model for the hidden surfaces. We demonstrate that such a plane-based model results in much higher SBR while simultaneously being amenable to larger spatial scales. We build an experimental prototype composed of a pulsed laser source and a single-photon avalanche detector (SPAD) that can achieve a time resolution of about 30ps and demonstrate high-fidelity reconstructions both of individual planes in a hidden volume and for reconstructing entire polygonal rooms composed of multiple planar walls.
  • Loading...
    Thumbnail Image
    Item
    SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography
    (AAAS, 2017) Holloway, Jason; Wu, Yicheng; Sharma, Manoj K.; Cossairt, Oliver; Veeraraghavan, Ashok
    Synthetic aperture radar is a well-known technique for improving resolution in radio imaging. Extending these synthetic aperture techniques to the visible light domain is not straightforward because optical receivers cannot measure phase information. We propose to use macroscopic Fourier ptychography (FP) as a practical means of creating a synthetic aperture for visible imaging to achieve subdiffraction-limited resolution. We demonstrate the first working prototype for macroscopic FP in a reflection imaging geometry that is capable of imaging optically rough objects. In addition, a novel image space denoising regularization is introduced during phase retrieval to reduce the effects of speckle and improve perceptual quality of the recovered high-resolution image. Our approach is validated experimentally where the resolution of various diffuse objects is improved sixfold.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892