Browsing by Author "Connell, Jennifer P."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Dantrolene inhibits lysophosphatidylcholine-induced valve interstitial cell calcific nodule formation via blockade of the ryanodine receptor(Frontiers Media S.A., 2023) Sylvester, Christopher B.; Amirkhosravi, Farshad; Bortoletto, Angelina S.; West, William J.; Connell, Jennifer P.; Grande-Allen, K. JaneCalcific aortic valve disease (CAVD), a fibrocalcific thickening of the aortic valve leaflets causing obstruction of the left ventricular outflow tract, affects nearly 10 million people worldwide. For those who reach end-stage CAVD, the only treatment is highly invasive valve replacement. The development of pharmaceutical treatments that can slow or reverse the progression in those affected by CAVD would greatly advance the treatment of this disease. The principal cell type responsible for the fibrocalcific thickening of the valve leaflets in CAVD is valvular interstitial cells (VICs). The cellular processes mediating this calcification are complex, but calcium second messenger signaling, regulated in part by the ryanodine receptor (RyR), has been shown to play a role in a number of other fibrocalcific diseases. We sought to determine if the blockade of calcium signaling in VICs could ameliorate calcification in an in vitro model. We previously found that VICs express RyR isotype 3 and that its modulation could prevent VIC calcific nodule formation in vitro. We sought to expand upon these results by further investigating the effects of calcium signaling blockade on VIC gene expression and behavior using dantrolene, an FDA-approved pan-RyR inhibitor. We found that dantrolene also prevented calcific nodule formation in VICs due to cholesterol-derived lysophosphatidylcholine (LPC). This protective effect corresponded with decreases in intracellular calcium flux, apoptosis, and ACTA2 expression but not reactive oxygen species formation caused by LPC. Interestingly, dantrolene increased the expression of the regulator genes RUNX2 and SOX9, indicating complex gene regulation changes. Further investigation via RNA sequencing revealed that dantrolene induced several cytoprotective genes that are likely also responsible for its attenuation of LPC-induced calcification. These results suggest that RyR3 is a viable therapeutic target for the treatment of CAVD. Further studies of the effects of RyR3 inhibition on CAVD are warranted.Item Knockout of hyaluronan synthase 1, but not 3, impairs formation of the retrocalcaneal bursa(Wiley, 2018) Sikes, Katie J.; Renner, Kristen; Li, Jun; Grande‐Allen, K. Jane; Connell, Jennifer P.; Cali, Valbona; Midura, Ronald J.; Sandy, John D.; Plaas, Anna; Wang, Vincent M.Hyaluronan (HA), a high molecular weight non‐sulfated glycosaminoglycan, is an integral component of the extracellular matrix of developing and mature connective tissues including tendon. There are few published reports quantifying HA content during tendon growth and maturation, or detailing its effects on the mechanical properties of the tendon extracellular matrix. Therefore, the goal of the current study was to examine the role of HA synthesis during post‐natal skeletal growth and maturation, and its influence on tendon structure and biomechanical function. For this purpose, the morphological, biochemical, and mechanical properties of Achilles tendons from wild type (WT) and hyaluronan synthase 1 and 3 deficient mouse strains (Has1−/− (Has1KO), Has3−/− (Has3KO), and Has1−/−3−/− (Has1/3KO)) were determined at 4, 8, and 12 weeks of age. Overall, HAS‐deficient mice did not show any marked differences from WT mice in Achilles tendon morphology or in the HA and chondroitin/dermatan sulfate (CS/DS) contents. However, HAS1‐deficiency (in the single or Has1/3 double KO) impeded post‐natal formation of the retrocalcaneal bursa, implicating HAS1 in regulating HA metabolism by cells lining the bursal cavity. Together, these data suggest that HA metabolism via HAS1 and HAS3 does not markedly influence the extracellular matrix structure or function of the tendon body, but plays a role in the formation/maintenance of peritendinous bursa. Additional studies are warranted to elucidate the relationship of HA and CS/DS metabolism to tendon healing and repair in vivo. © 2018 Orthopaedic Research Society.