Browsing by Author "Cohen, Daniel M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Measurement of mechanical tractions exerted by cells within three-dimensional matrices(Nature Publishing Group, 2010) Legant, Wesley R.; Miller, Jordan S.; Blakely, Brandon L.; Cohen, Daniel M.; Genin, Guy M.; Chen, Christopher S.; BioengineeringQuantitative measurements of cell-generated forces have heretofore required that cells be cultured on two-dimensional substrates. We describe a technique to quantitatively measure three-dimensional traction forces exerted by cells fully encapsulated within well-defined elastic hydrogel matrices. We apply this approach to measure tractions from a variety of cell types and contexts, and reveal patterns of force generation attributable to morphologically distinct regions of cells as they extend into the surrounding matrix.Item Rapid casting of patterned vascular networks for perfusable engineered 3D tissues(Nature Publishing Group, 2012) Miller, Jordan S.; Stevens, Kelly R.; Yang, Michael T.; Baker, Brendon M.; Nguyen, Duc-Huy T.; Cohen, Daniel M.; Toro, Esteban; Chen, Alice A.; Galie, Peter A.; Yu, Xiang; Chaturvedi, Ritika; Bhatia, Sangeeta N.; Chen, Christopher S.; BioengineeringIn the absence of perfusable vascular networks, three-dimensional (3D) engineered tissues densely populated with cells quickly develop a necrotic core [1]. Yet the lack of a general approach to rapidly construct such networks remains a major challenge for 3D tissue culture [2-4]. Here, we 3D printed rigid filament networks of carbohydrate glass, and used them as a cytocompatible sacrificial template in engineered tissues containing living cells to generate cylindrical networks which could be lined with endothelial cells and perfused with blood under high-pressure pulsatile flow. Because this simple vascular casting approach allows independent control of network geometry, endothelialization, and extravascular tissue, it is compatible with a wide variety of cell types, synthetic and natural extracellular matrices (ECMs), and crosslinking strategies. We also demonstrated that the perfused vascular channels sustained the metabolic function of primary rat hepatocytes in engineered tissue constructs that otherwise exhibited suppressed function in their core.