Browsing by Author "Chung, Leland W.K."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Matrilysin/MMP-7 Cleavage of Perlecan/HSPG2 Complexed with Semaphorin 3A Supports FAK-Mediated Stromal Invasion by Prostate Cancer Cells(Springer Nature, 2018) Grindel, Brian J.; Martinez, Jerahme R.; Tellman, Tristen V.; Harrington, Daniel Anton; Zafar, Hamim; Nakhleh, Luay K.; Chung, Leland W.K.; Farach-Carson, Mary C.Interrupting the interplay between cancer cells and extracellular matrix (ECM) is a strategy to halt tumor progression and stromal invasion. Perlecan/heparan sulfate proteoglycan 2 (HSPG2) is an extracellular proteoglycan that orchestrates tumor angiogenesis, proliferation, differentiation and invasion. Metastatic prostate cancer (PCa) cells degrade perlecan-rich tissue borders to reach bone, including the basement membrane, vasculature, reactive stromal matrix and bone marrow. Domain IV-3, perlecan's last 7 immunoglobulin repeats, mimics native proteoglycan by promoting tumoroid formation. This is reversed by matrilysin/matrix metalloproteinase-7 (MMP-7) cleavage to favor cell dispersion and tumoroid dyscohesion. Both perlecan and Domain IV-3 induced a strong focal adhesion kinase (FAK) dephosphorylation/deactivation. MMP-7 cleavage of perlecan reversed this, with FAK in dispersed tumoroids becoming phosphorylated/activated with metastatic phenotype. We demonstrated Domain IV-3 interacts with the axon guidance protein semaphorin 3A (Sema3A) on PCa cells to deactivate pro-metastatic FAK. Sema3A antibody mimicked the Domain IV-3 clustering activity. Direct binding experiments showed Domain IV-3 binds Sema3A. Knockdown of Sema3A prevented Domain IV-3-induced tumoroid formation and Sema3A was sensitive to MMP-7 proteolysis. The perlecan-Sema3A complex abrogates FAK activity and stabilizes PCa cell interactions. MMP-7 expressing cells destroy the complex to initiate metastasis, destroy perlecan-rich borders, and favor invasion and progression to lethal bone disease.Item Perlecan/HSPG2 and matrilysin/MMP-7 as indices of tissue invasion: tissue localization and circulating perlecan fragments in a cohort of 288 radical prostatectomy patients(Impact Journals, LLC, 2016) Grindel, Brian J.; Li, Quanlin; Arnold, Rebecca; Petros, John; Zayzafoon, Majd; Muldoon, Mark; Stave, James; Chung, Leland W.K.; Farach-Carson, Mary C.Prostate cancer (PCa) cells use matrix metalloproteinases (MMPs) to degrade tissue during invasion. Perlecan/HSPG2 is degraded at basement membranes, in reactive stroma and in bone marrow during metastasis. We previously showed MMP-7 efficiently degrades perlecan. We now analyzed PCa tissue and serum from 288 prostatectomy patients of various Gleason grades to decipher the relationship between perlecan and MMP-7 in invasive PCa. In 157 prostatectomy specimens examined by tissue microarray, perlecan levels were 18% higher than their normal counterparts. In Gleason grade 4 tissues, MMP-7 and perlecan immunostaining levels were highly correlated with each other (average correlation coefficient of 0.52) in PCa tissue, regardless of grade. Serial sections showed intense, but non-overlapping, immunostaining for MMP-7 and perlecan at adjacent borders, reflecting the protease-substrate relationship. Using a capture assay, analysis of 288 PCa sera collected at prostatectomy showed elevated levels of perlecan fragments, with most derived from domain IV. Perlecan fragments in PCa sera were associated with overall MMP-7 staining levels in PCa tissues. Domain IV perlecan fragments were present in stage IV, but absent in normal, sera, suggesting perlecan degradation during metastasis. Together, perlecan fragments in sera and MMP-7 in tissues of PCa patients are measures of invasive PCa.Item RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization(Bioscientifica Ltd., 2014) Chu, Gina Chia-Yi; Zhau, Haiyen E.; Wang, Ruoxiang; Rogatko, André; Feng, Xu; Zayzafoon, Majd; Liu, Youhua; Farach-Carson, Mary C.; You, Sungyong; Kim, Jayoung; Freeman, Michael R.; Chung, Leland W.K.Prostate cancer (PCa) metastasis to bone is lethal and there is no adequate animal model to study the mechanisms underlying the metastatic process. Here we report that receptor activator of NF-κB ligand (RANKL) expressed by PCa cells consistently induced colonization or metastasis to bone in animal models. RANK-mediated signaling established a premetastatic niche through a feed forward loop, involving the induction of RANKL and c-Met, but repression of androgen receptor (AR) expression and AR signaling pathways. Site-directed mutagenesis and transcription factor deletion/interference assays identified common transcription factor complexes (TFs), c-Myc/Max and AP4, as critical regulatory nodes. RANKL-RANK signaling activated a number of master regulator TFs that control the epithelial-mesenchymal transition (EMT) (Twist1, Slug, Zeb1, Zeb2), stem cell properties (Sox2, Myc, Oct3/4 and Nanog), neuroendocrine differentiation (Sox 9, HIF-1α and FoxA2) and osteomimicry (c-Myc/Max, Sox2, Sox9, HIF1α and Runx2). Abrogating RANK or its downstream c-Myc/Max or c-Met signaling network, minimized or abolished skeletal metastasis in mice. RANKL-expressing LNCaP cells recruited and induced neighboring non-tumorigenic LNCaP cells to express RANKL, c-Met/activated c-Met, while downregulating AR expression. These initially non-tumorigenic cells, once retrieved from the tumors, acquired the potential to colonize and grow in bone. These findings identify a novel mechanism of tumor growth in bone that involves tumor cell reprogramming via RANK-RANKL signaling, as well as a form of signal amplification that mediates recruitment and stable transformation of non-metastatic cells.