Browsing by Author "Cho, Minjung"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Biomedical Nanocrystal Agents: Design, Synthesis, and Applications(2013-09-16) Cho, Minjung; Colvin, Vicki L.; McDevitt, John T.; Wong, Michael S.In these days, nanomaterials are applied in a variety of biomedical applications including magnetic resonance imaging (MRI), cell imaging, drug delivery, and cell separation. Most MRI contrast agents affect the longitudinal relaxation time (T1) and transverse relaxation time (T2) of water protons in the tissue and result in increased positive or negative contrast. Here, we report the optimization of r1 (1/T1) or r2 (1/T2) relaxivity dynamics with diameter controlled gadolinium oxide nanocrystals (2~22 nm) and iron based magnetic nanocrystals (4 ~33 nm). The r1 and r2 MR relaxivity values of hydrated nanocrystals were optimized and examined depending on their core diameter, surface coating, and compositions; the high r1 value of gadolinium oxide was 40-60 S-1mM-1, which is 10-15 fold higher than that of commercial Gd (III) chelates (4.3~4.6 S-1mM-1). Moreover, in vitro toxicological studies revealed that polymer coated nanocrystals suspensions had no significant effect on human dermal fibroblast (HDF) cells even at high concentration. Towards multimodal imaging or multifunctional ability, we developed the iron oxide/QDs complexes, which consist of cores of iron oxide that act as nucleation sites for fluorescent QDs. The choice of variable QDs helped to visualize and remove large iron oxide materials in a magnetic separation. Additionally, diluted materials concentrated on the magnet could be fluorescently detected even at very low concentration. The designed MRI or multifunctional nanomaterials will give great and powerful uses in biomedical applications.Item Facile Graphene Oxide Preparation by Microwave-Assisted Acid Method(Sociedade Brasileira de Química, 2015) Viana, Marcelo M.; Lima, Meiriane C.F.S.; Forsythe, Jerimiah C.; Gangoli, Varun S.; Cho, Minjung; Cheng, Yinhong; Silva, Glaura G.; Wong, Michael S.; Caliman, ViniciusFew-layered graphene oxide (GO) was prepared using a fast and energy-saving method by microwave-assisted acid technique. The oxygenated groups existing on the GO surface were determined using UV-Vis, X-ray photoelectron and Fourier-transform infrared spectroscopies. An oxygenated group percentage of 30% in mass for the GO was observed by thermogravimetric analysis. The reduced few-layered graphene oxide (rGO) film annealed at 110 °C deposited onto a silicon/silica wafer showed expanded graphite-like structure with 0.70 nm between the rGO sheets, as determined by X-ray diffraction. This rGO film exhibited a relatively high electrical conductivity value of 7.36 × 102 S m-1 confirming the good restoration of the π-conjugated system. The prepared GO sample exhibited good stability in water from pH 4 to 12, as determined by its zeta potential, and contained 5 to 9 layers, as determined by atomic force microscopy (AFM) and transmission electron microscopy (TEM).Item Toxicity of Quantum Dots and Cadmium Salt to Caenorhabditis elegans after Multigenerational Exposure(American Chemical Society, 2013) Contreras, Elizabeth Q.; Cho, Minjung; Zhu, Huiguang; Puppala, Hema L.; Escalera, Gabriela; Zhong, Weiwei; Colvin, Vicki L.To fully understand the biological and environmental impacts of nanomaterials requires studies that address both sublethal end points and multigenerational effects. Here, we use a nematode to examine these issues as they relate to exposure to two different types of quantum dots, core (CdSe) and coreヨshell (CdSe/ZnS), and to compare the effect to those observed after cadmium salt exposures. The strong fluorescence of the coreヨshell QDs allowed for the direct visualization of the materials in the digestive track within a few hours of exposure. Multiple end points, including both developmental and locomotive, were examined at QD exposures of low (10 mg/L Cd), medium (50 mg/L Cd), and high concentrations (100 mg/L Cd). While the coreヨshell QDs showed no effect on fitness (lifespan, fertility, growth, and three parameters of motility behavior), the core QDs caused acute effects similar to those found for cadmium salts, suggesting that biological effects may be attributed to cadmium leaching from the more soluble QDs. Over multiple generations, we commonly found that for lower life-cycle exposures to core QDs the parents response was generally a poor predictor of the effects on progeny. At the highest concentrations, however, biological effects found for the first generation were commonly similar in magnitude to those found in future generations.