Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chiu, Yu-Chieh"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Sustained delivery of recombinant human bone morphogenetic protein-2 from perlecan domain I - functionalized electrospun poly (ε-caprolactone) scaffolds for bone regeneration
    (Springer, 2016) Chiu, Yu-Chieh; Fong, Eliza L.S.; Grindel, Brian J.; Kasper, Fred K.; Harrington, Daniel Anton; Farach-Carson, Mary C.; Bioengineering; Biosciences
    Background: Biomaterial scaffolds that deliver growth factors such as recombinant human bone morphogenetic proteins-2 (rhBMP-2) have improved clinical bone tissue engineering by enhancing bone tissue regeneration. This approach could be further improved if the controlled delivery of bioactive rhBMP-2 were sustained throughout the duration of osteogenesis from fibrous scaffolds that provide control over dose and bioactivity of rhBMP-2. In nature, heparan sulfate attached to core proteoglycans serves as the co-receptor that delivers growth factors to support tissue morphogenesis. Methods: To mimic this behavior, we conjugated heparan sulfate decorated recombinant domain I of perlecan/HSPG2 onto an electrospun poly(ε-caprolactone) (PCL) scaffold, hypothesizing that the heparan sulfate chains will enhance rhBMP-2 loading onto the scaffold and preserve delivered rhBMP-2 bioactivity. Results: In this study, we demonstrated that covalently conjugated perlecan domain I increased loading capacity of rhBMP-2 onto PCL scaffolds when compared to control unconjugated scaffolds. Additionally, rhBMP-2 released from the modified scaffolds enhanced alkaline phosphatase activity in W20–17 mouse bone marrow stromal cells, indicating the preservation of rhBMP-2 bioactivity indicative of osteogenesis. Conclusions: We conclude that this platform provides a sophisticated and efficient approach to deliver bioactive rhBMP-2 for bone tissue regeneration applications.
  • Loading...
    Thumbnail Image
    Item
    Sustained delivery of recombinant human bone morphogenetic protein-2 from perlecan domain I - functionalized electrospun poly (ε-caprolactone) scaffolds for bone regeneration
    (Springer Nature, 2016) Chiu, Yu-Chieh; Fong, Eliza L.S.; Grindel, Brian J.; Kasper, Fred K.; Harrington, Daniel Anton; Farach-Carson, Mary C.; Bioengineering; Biosciences
    Background: Biomaterial scaffolds that deliver growth factors such as recombinant human bone morphogenetic proteins-2 (rhBMP-2) have improved clinical bone tissue engineering by enhancing bone tissue regeneration. This approach could be further improved if the controlled delivery of bioactive rhBMP-2 were sustained throughout the duration of osteogenesis from fibrous scaffolds that provide control over dose and bioactivity of rhBMP-2. In nature, heparan sulfate attached to core proteoglycans serves as the co-receptor that delivers growth factors to support tissue morphogenesis. Methods: To mimic this behavior, we conjugated heparan sulfate decorated recombinant domain I of perlecan/HSPG2 onto an electrospun poly(ε-caprolactone) (PCL) scaffold, hypothesizing that the heparan sulfate chains will enhance rhBMP-2 loading onto the scaffold and preserve delivered rhBMP-2 bioactivity. Results: In this study, we demonstrated that covalently conjugated perlecan domain I increased loading capacity of rhBMP-2 onto PCL scaffolds when compared to control unconjugated scaffolds. Additionally, rhBMP-2 released from the modified scaffolds enhanced alkaline phosphatase activity in W20–17 mouse bone marrow stromal cells, indicating the preservation of rhBMP-2 bioactivity indicative of osteogenesis. Conclusions: We conclude that this platform provides a sophisticated and efficient approach to deliver bioactive rhBMP-2 for bone tissue regeneration applications.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892