Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chiang, Sharon"

Now showing 1 - 8 of 8
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Bayesian switching linear dynamical system for estimating seizure chronotypes
    (National Academy of Sciences, 2022) Wang, Emily T.; Vannucci, Marina; Haneef, Zulfi; Moss, Robert; Rao, Vikram R.; Chiang, Sharon
    Epilepsy is a disorder characterized by paroxysmal transitions between multistable states. Dynamical systems have been useful for modeling the paroxysmal nature of seizures. At the same time, intracranial electroencephalography (EEG) recordings have recently discovered that an electrographic measure of epileptogenicity, interictal epileptiform activity, exhibits cycling patterns ranging from ultradian to multidien rhythmicity, with seizures phase-locked to specific phases of these latent cycles. However, many mechanistic questions about seizure cycles remain unanswered. Here, we provide a principled approach to recast the modeling of seizure chronotypes within a statistical dynamical systems framework by developing a Bayesian switching linear dynamical system (SLDS) with variable selection to estimate latent seizure cycles. We propose a Markov chain Monte Carlo algorithm that employs particle Gibbs with ancestral sampling to estimate latent cycles in epilepsy and apply unsupervised learning on spectral features of latent cycles to uncover clusters in cycling tendency. We analyze the largest database of patient-reported seizures in the world to comprehensively characterize multidien cycling patterns among 1,012 people with epilepsy, spanning from infancy to older adulthood. Our work advances knowledge of cycling in epilepsy by investigating how multidien seizure cycles vary in people with epilepsy, while demonstrating an application of an SLDS to frame seizure cycling within a nonlinear dynamical systems framework. It also lays the groundwork for future studies to pursue data-driven hypothesis generation regarding the mechanistic drivers of seizure cycles.
  • Loading...
    Thumbnail Image
    Item
    A Hierarchical Bayesian Model for the Identification of PET Markers Associated to the Prediction of Surgical Outcome after Anterior Temporal Lobe Resection
    (Frontiers Media S.A., 2017) Chiang, Sharon; Guindani, Michele; Yeh, Hsiang J.; Dewar, Sandra; Haneef, Zulfi; Stern, John M.; Vannucci, Marina
    We develop an integrative Bayesian predictive modeling framework that identifies individual pathological brain states based on the selection of fluoro-deoxyglucose positron emission tomography (PET) imaging biomarkers and evaluates the association of those states with a clinical outcome. We consider data from a study on temporal lobe epilepsy (TLE) patients who subsequently underwent anterior temporal lobe resection. Our modeling framework looks at the observed profiles of regional glucose metabolism in PET as the phenotypic manifestation of a latent individual pathologic state, which is assumed to vary across the population. The modeling strategy we adopt allows the identification of patient subgroups characterized by latent pathologies differentially associated to the clinical outcome of interest. It also identifies imaging biomarkers characterizing the pathological states of the subjects. In the data application, we identify a subgroup of TLE patients at high risk for post-surgical seizure recurrence after anterior temporal lobe resection, together with a set of discriminatory brain regions that can be used to distinguish the latent subgroups. We show that the proposed method achieves high cross-validated accuracy in predicting post-surgical seizure recurrence.
  • Loading...
    Thumbnail Image
    Item
    Bayesian non-homogeneous hidden Markov model with variable selection for investigating drivers of seizure risk cycling
    (Project Euclid, 2023) Wang, Emily T.; Chiang, Sharon; Haneef, Zulfi; Rao, Vikram R.; Moss, Robert; Vannucci, Marina
    A major issue in the clinical management of epilepsy is the unpredictability of seizures. Yet, traditional approaches to seizure forecasting and risk assessment in epilepsy rely heavily on raw seizure frequencies which are a stochastic measurement of seizure risk. We consider a Bayesian nonhomogeneous hidden Markov model for unsupervised clustering of zero-inflated seizure count data. The proposed model allows for a probabilistic estimate of the sequence of seizure risk states at the individual level. It also offers significant improvement over prior approaches by incorporating a variable selection prior for the identification of clinical covariates that drive seizure risk changes and accommodating highly granular data. For inference, we implement an efficient sampler that employs stochastic search and data augmentation techniques. We evaluate model performance on simulated seizure count data. We then demonstrate the clinical utility of the proposed model by analyzing daily seizure count data from 133 patients with Dravet syndrome collected through the Seizure TrackerTMTM system, a patient-reported electronic seizure diary. We report on the dynamics of seizure risk cycling, including validation of several known pharmacologic relationships. We also uncover novel findings characterizing the presence and volatility of risk states in Dravet syndrome which may directly inform counseling to reduce the unpredictability of seizures for patients with this devastating cause of epilepsy.
  • Loading...
    Thumbnail Image
    Item
    Epilepsy as a dynamic disease: A Bayesian model for differentiating seizure risk from natural variability
    (Wiley, 2018) Chiang, Sharon; Vannucci, Marina; Goldenholz, Daniel M.; Moss, Robert; Stern, John M.
    Objective: A fundamental challenge in treating epilepsy is that changes in observed seizure frequencies do not necessarily reflect changes in underlying seizure risk. Rather, changes in seizure frequency may occur due to probabilistic variation around an underlying seizure risk state caused by normal fluctuations from natural history, leading to seizure unpredictability and potentially suboptimal medication adjustments in epilepsy management. However, no rigorous statistical approach exists to systematically distinguish expected changes in seizure frequency due to natural variability from changes in underlying seizure risk. Methods: Using data from SeizureTracker.com, a patient‐reported seizure diary tool containing over 1.2 million recorded seizures across 8 years, a novel epilepsy seizure risk assessment tool (EpiSAT) employing a Bayesian mixed‐effects hidden Markov model for zero‐inflated count data was developed to estimate changes in underlying seizure risk using patient‐reported seizure diary and clinical measurement data. Accuracy for correctly assessing underlying seizure risk was evaluated through a simulation comparison. Implications for the natural history of tuberous sclerosis complex (TSC) were assessed using data from SeizureTracker.com. Results: EpiSAT led to significant improvement in seizure risk assessment compared to traditional approaches relying solely on observed seizure frequencies. Applied to TSC, four underlying seizure risk states were identified. The expected duration of each state was <12 months, providing a data‐driven estimate of the amount of time a person with TSC would be expected to remain at the same seizure risk level according to the natural course of epilepsy. Significance: We propose a novel Bayesian statistical approach for evaluating seizure risk on an individual patient level using patient‐reported seizure diaries, which allows for the incorporation of external clinical variables to assess impact on seizure risk. This tool may improve the ability to distinguish true changes in seizure risk from natural variations in seizure frequency in clinical practice. Incorporation of systematic statistical approaches into antiepileptic drug (AED) management may help improve understanding of seizure unpredictability as well as timing of treatment interventions for people with epilepsy.
  • Loading...
    Thumbnail Image
    Item
    Hierarchical Bayesian Models for Multimodal Neuroimaging Data
    (2016-03-30) Chiang, Sharon; Vannucci, Marina
    Within the past few decades, advances in imaging acquisition have given rise to a large number of in vivo techniques for brain mapping. This wide range of structural and functional imaging modalities provides a major source of information-rich data which may be used to non-invasively understand the human brain, and is a promising source of information for improved clinical diagnosis and treatment decision-making. Due to the complex spatial structure of neuroimaging data as well as the small number of samples typically collected in neuroimaging experiments, statistical methods which try to integrate different types of neuroimaging data are paramount. Our research is focused on the development of methods which allow for incorporation of prior information from multimodal neuroimaging sources to improve the reliability of inference in the presence of small to moderate sample sizes. First, we propose an integrative predictive modeling framework for neuroimaging data with spatial structure, such as positron emission tomography or structural MRI. The method provides a unified framework for the identification of pathologic subgroups, identification of imaging biomarkers characterizing the pathologic states, and prediction of the clinical outcome of interest. Furthermore, Bayesian priors are used to inform the selection of imaging markers with external imaging data. We assess the performance of our method on synthetic data and compare its performance to competing methods. We demonstrate use of the proposed method for identifying markers for patients at high-risk for poor treatment outcome from a study on temporal lobe epilepsy patients undergoing anterior temporal lobe resection. Second, we propose a multi-subject approach for effective connectivity inference using resting-state functional MRI data. The proposed method provides a joint, single-stage framework for multi-subject effective connectivity inference at both the subject- and group-levels. Furthermore, it accounts for multi-modal imaging data by integrating structural imaging information into the prior model. We investigate the performance of the proposed model on simulated data, and demonstrate through simulation studies that the approach results in improved inference on effective connectivity at both the subject- and group-levels compared to currently used methods. The proposed method is illustrated through an application to resting-state functional MRI and structural MRI for identifying effective connectivity in temporal lobe epilepsy patients and healthy controls.
  • Loading...
    Thumbnail Image
    Item
    Spatial mapping of translational diffusion coefficients using diffusion tensor imaging: A mathematical description
    (Wiley, 2014) Shetty, Anil N.; Chiang, Sharon; Maletic-Savatic, Mirjana; Kasprian, Gregor; Vannucci, Marina; Lee, Wesley
    In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal–Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain.
  • Loading...
    Thumbnail Image
    Item
    Temporal and spectral characteristics of dynamic functional connectivity between resting-state networks reveal information beyond static connectivity
    (Public Library of Science, 2018) Chiang, Sharon; Vankov, Emilian R.; Yeh, Hsiang J.; Guindani, Michele; Vannucci, Marina; Haneef, Zulfi; Stern, John M.
    Estimation of functional connectivity (FC) has become an increasingly powerful tool for investigating healthy and abnormal brain function. Static connectivity, in particular, has played a large part in guiding conclusions from the majority of resting-state functional MRI studies. However, accumulating evidence points to the presence of temporal fluctuations in FC, leading to increasing interest in estimating FC as a dynamic quantity. One central issue that has arisen in this new view of connectivity is the dramatic increase in complexity caused by dynamic functional connectivity (dFC) estimation. To computationally handle this increased complexity, a limited set of dFC properties, primarily the mean and variance, have generally been considered. Additionally, it remains unclear how to integrate the increased information from dFC into pattern recognition techniques for subject-level prediction. In this study, we propose an approach to address these two issues based on a large number of previously unexplored temporal and spectral features of dynamic functional connectivity. A Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is used to estimate time-varying patterns of functional connectivity between resting-state networks. Time-frequency analysis is then performed on dFC estimates, and a large number of previously unexplored temporal and spectral features drawn from signal processing literature are extracted for dFC estimates. We apply the investigated features to two neurologic populations of interest, healthy controls and patients with temporal lobe epilepsy, and show that the proposed approach leads to substantial increases in predictive performance compared to both traditional estimates of static connectivity as well as current approaches to dFC. Variable importance is assessed and shows that there are several quantities that can be extracted from dFC signal which are more informative than the traditional mean or variance of dFC. This work illuminates many previously unexplored facets of the dynamic properties of functional connectivity between resting-state networks, and provides a platform for dynamic functional connectivity analysis that facilitates its usage as an investigative measure for healthy as well as abnormal brain function.
  • Loading...
    Thumbnail Image
    Item
    Time-dependence of graph theory metrics in functional connectivity analysis
    (Elsevier, 2016) Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J.; Haneef, Zulfi; Stern, John M.
    Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use ofᅠgraph theoryᅠto quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesianᅠhidden Markov modelᅠ(HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: theᅠS-index andᅠN-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-stateᅠfunctional MRIᅠdata from healthy controls and patients withᅠtemporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892