Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cheng, Xiaoxi"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Evolution problems in geometric analysis
    (1991) Cheng, Xiaoxi; Hardt, Robert M.
    This thesis studies problems derived from nonlinear partial differential equations of parabolic type. Part I. A mass reducing flow for integral currents. A mass reducing flow of integral current is constructed. The current flow has the property that it is Holder continuous under the flat norm and reduces the mass of the initial current while keeping the boundary fixed. Part II. Estimate of singular set of the evolution problems for harmonic maps. Let $u$: ${\cal M}$ $\times$ R$\sb+$ $\to$ ${\cal N}$ be a weak solution to the evolution problem for harmonic maps. We prove that the singular set of $u$ has at most finite $m$ $-$ 2 dimensional Hausdorff measure on each time slice ${\cal M}$ $\times$ $\{t\}$.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892