Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chang, Shun-Cheng"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Critical Riemannian metrics
    (1990) Chang, Shun-Cheng; Gao, Zhiyong
    Let $(M,g)$ be a compact oriented n-dimensional smooth Riemannian manifold. Consider the following quadratic Riemannian functional$$SR(g) = \int\sb{M}\ \vert R\sb{ijkl}(g)\vert \sp{2}d\mu$$which is homogeneous of degree ${n\over2}-2,$ where $R\sb{ijkl}$(g) is the curvature tensors of $(M,g)$ and $d\mu$ is the volume element measured by g. A critical point of $SR(g)$ is called a critical metric on M, that is, the Ricci tensor satisfies the critical equations grad$SR\sb{g}$ = 0. In particular, for a compact 4-manifold M, every Einstein metric is a critical metric for SR on M. In this thesis, we propose an extension of the compactness property for Einstein metrics to critical metrics on a compact smooth Riemannian 4-manifold M. More precisely, first we consider the subspace $G(M)$ of all critical metrics on M with the injectivity radius bounded from below by a constant $i\sb{0} >$ 0 and diameter bounded from above by d. Then we are able to prove that $G(M)$ is compact as a subset of moduli space of critical metrics in the $C\sp{\infty}$-topology (Theorem 6.1). Second, we replaced the injectivity radius lower bound by the local volume bound, then we get a compact 4-dimensional critical orbifold (Theorem 7.1). Furthermore, by using the fundamental equations of Riemannian submersions with totally geodesic fibers, we construct some critical Riemannian 4-manifolds.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892