Browsing by Author "Chan, Julia Y."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Anomalous Metamagnetism in the Low Carrier Density Kondo Lattice YbRh3Si7(American Physical Society, 2018) Rai, Binod K.; Chikara, S.; Ding, Xiaxin; Oswald, Iain W.H.; Schönemann, R.; Loganathan, V.; Hallas, A.M.; Cao, H.B.; Stavinoha, Macy; Chen, T.; Man, Haoran; Carr, Scott; Singleton, John; Zapf, Vivien; Benavides, Katherine A.; Chan, Julia Y.; Zhang, Q.R.; Rhodes, D.; Chiu, Y.C.; Balicas, Luis; Aczel, A.A.; Huang, Q.; Lynn, Jeffrey W.; Gaudet, J.; Sokolov, D.A.; Walker, H.C.; Adroja, D.T.; Dai, Pengcheng; Nevidomskyy, Andriy H.; Huang, C.-L.; Morosan, E.We report complex metamagnetic transitions in single crystals of the new low carrier Kondo antiferromagnet YbRh3Si7. Electrical transport, magnetization, and specific heat measurements reveal antiferromagnetic order at TN=7.5 K. Neutron diffraction measurements show that the magnetic ground state of YbRh3Si7 is a collinear antiferromagnet, where the moments are aligned in the ab plane. With such an ordered state, no metamagnetic transitions are expected when a magnetic field is applied along the c axis. It is therefore surprising that high-field magnetization, torque, and resistivity measurements with H∥c reveal two metamagnetic transitions at μ0H1=6.7 T and μ0H2=21 T. When the field is tilted away from the c axis, towards the ab plane, both metamagnetic transitions are shifted to higher fields. The first metamagnetic transition leads to an abrupt increase in the electrical resistivity, while the second transition is accompanied by a dramatic reduction in the electrical resistivity. Thus, the magnetic and electronic degrees of freedom in YbRh3Si7 are strongly coupled. We discuss the origin of the anomalous metamagnetism and conclude that it is related to competition between crystal electric-field anisotropy and anisotropic exchange interactions.Item CeIr3Ge7: A local moment antiferromagnetic metal with extremely low ordering temperature(American Physical Society, 2018) Rai, Binod K.; Banda, Jacintha; Stavinoha, Macy; Borth, R.; Jang, D.-J.; Benavides, Katherine A.; Sokolov, D. A.; Chan, Julia Y.; Nicklas, M.; Brando, Manuel; Huang, C.-L.; Morosan, E.CeIr3Ge7 is an antiferromagnetic metal with a remarkably low ordering temperature TN=0.63K, while most Ce-based magnets order between 2 and 15 K. Thermodynamic and transport properties as a function of magnetic field or pressure do not show signatures of Kondo correlations, interaction competition, or frustration, as had been observed in a few antiferromagnets with comparably low or lower TN. The averaged Weiss temperature measured below 10 K is comparable to TN, suggesting that the Ruderman-Kittel-Kasuya-Yosida exchange coupling is very weak in this material. The unusually low TN in CeIr3Ge7 can therefore be attributed to the large Ce-Ce bond length of about 5.7 Å, which is about 1.5 Å larger than in the most Ce-based intermetallic systems.Item Intermediate valence to heavy fermion through a quantum phase transition in Yb3(Rh1−xTx)4Ge13 (T=Co,Ir) single crystals(American Physical Society, 2016) Rai, Binod K.; Oswald, Iain W.H.; Chan, Julia Y.; Morosan, E.Single crystals of Yb3(Rh1−xTx)4Ge13 (T=Co,Ir) have been grown using the self-flux method. Powder x-ray diffraction data on these compounds are consistent with the cubic structure with space group Pm3¯n. Intermediate-valence behavior is observed in Yb3(Rh1−xTx)4Ge13 upon T = Co doping, while T = Ir doping drives the system into a heavy-fermion state. Antiferromagnetic order is observed in the Ir-doped samples Yb3(Rh1−xTx)4Ge13 for 0.5Item Low-carrier density and fragile magnetism in a Kondo lattice system(American Physical Society, 2019) Rai, Binod K.; Oswald, Iain W.H.; Ban, Wenjing; Huang, C.-L.; Loganathan, V.; Hallas, A.M.; Wilson, M.N.; Luke, G.M.; Harriger, L.; Huang, Q.; Li, Y.; Dzsaber, Sami; Chan, Julia Y.; Wang, N.L.; Paschen, Silke; Lynn, J.W.; Nevidomskyy, Andriy H.; Dai, Pengcheng; Si, Q.; Morosan, E.; Rice Center for Quantum MaterialsKondo-based semimetals and semiconductors are of extensive current interest as a viable platform for strongly correlated states in the dilute carrier limit. It is thus important to explore the routes to understand such systems. One established pathway is through the Kondo effect in metallic nonmagnetic analogs, in the so called half-filling case of one conduction electron and oneᅠ4fᅠelectron per site. Here, we demonstrate that Kondo-based semimetals develop out of conduction electrons with a low-carrier density in the presence of an even number of rare-earth sites. We do so by studying the Kondo materialᅠYb3Ir4Ge13ᅠalong with its closed-4f-shell counterpart,ᅠLu3Ir4Ge13. Through magnetotransport, optical conductivity, and thermodynamic measurements, we establish that the correlated semimetallic state ofᅠYb3Ir4Ge13ᅠbelow its Kondo temperature originates from the Kondo effect of a low-carrier conduction-electron background. In addition, it displays fragile magnetism at very low temperatures, which in turn, can be tuned to a Griffiths-phase-like regime through Lu-for-Yb substitution. These findings are connected with recent theoretical studies in simplified models. Our results can pave the way to exploring strong correlation physics in a semimetallic environment.Item Nonsymmorphic symmetry-protected band crossings in a square-net metal PtPb4(Springer Nature, 2022) Wu, Han; Hallas, Alannah M.; Cai, Xiaochan; Huang, Jianwei; Oh, Ji Seop; Loganathan, Vaideesh; Weiland, Ashley; McCandless, Gregory T.; Chan, Julia Y.; Mo, Sung-Kwan; Lu, Donghui; Hashimoto, Makoto; Denlinger, Jonathan; Birgeneau, Robert J.; Nevidomskyy, Andriy H.; Li, Gang; Morosan, Emilia; Yi, Ming; Rice Center for Quantum MaterialsTopological semimetals with symmetry-protected band crossings have emerged as a rich landscape to explore intriguing electronic phenomena. Nonsymmorphic symmetries in particular have been shown to play an important role in protecting the crossings along a line (rather than a point) in momentum space. Here we report experimental and theoretical evidence for Dirac nodal line crossings along the Brillouin zone boundaries in PtPb4, arising from the nonsymmorphic symmetry of its crystal structure. Interestingly, while the nodal lines would remain gapless in the absence of spin–orbit coupling (SOC), the SOC, in this case, plays a detrimental role to topology by lifting the band degeneracy everywhere except at a set of isolated points. Nevertheless, the nodal line is observed to have a bandwidth much smaller than that found in density functional theory (DFT). Our findings reveal PtPb4 to be a material system with narrow crossings approximately protected by nonsymmorphic crystalline symmetries.Item Transport anomalies in the layered compound BaPt4Se6(Springer Nature, 2021) Li, Sheng; Zhang, Yichen; Wu, Hanlin; Zhai, Huifei; Liu, Wenhao; Petit, Daniel Peirano; Oh, Ji Seop; Denlinger, Jonathan; McCandless, Gregory T.; Chan, Julia Y.; Birgeneau, Robert J.; Li, Gang; Yi, Ming; Lv, BingWe report a layered ternary selenide BaPt4Se6 featuring sesqui-selenide Pt2Se3 layers sandwiched by Ba atoms. The Pt2Se3 layers in this compound can be derived from the Dirac-semimetal PtSe2 phase with Se vacancies that form a honeycomb structure. This structure results in a Pt (VI) and Pt (II) mixed-valence compound with both PtSe6 octahedra and PtSe4 square net coordination configurations. Temperature-dependent electrical transport measurements suggest two distinct anomalies: a resistivity crossover, mimic to the metal-insulator (M-I) transition at ~150 K, and a resistivity plateau at temperatures below 10 K. The resistivity crossover is not associated with any structural, magnetic, or charge order modulated phase transitions. Magnetoresistivity, Hall, and heat capacity measurements concurrently suggest an existing hidden state below 5 K in this system. Angle-resolved photoemission spectroscopy measurements reveal a metallic state and no dramatic reconstruction of the electronic structure up to 200 K.