Browsing by Author "Chan, Anthony"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Testing the Organization of Lower-Band Whistler-Mode Chorus Wave Properties by Plasmapause Location(Wiley, 2021) Malaspina, David M.; Jaynes, Allison N.; Elkington, Scot; Chan, Anthony; Hospodarsky, George; Wygant, JohnLower-band whistler-mode chorus waves are important to the dynamics of Earth's radiation belts, playing a key role in accelerating seed population electrons (hundreds of keV) to relativistic (>1 MeV) energies, and in scattering electrons such that they precipitate into the atmosphere. When constructing and using statistical models of lower-band whistler-mode chorus wave power, it is commonly assumed that wave power is spatially distributed with respect to magnetic L-shell. At the same time, these waves are known to drop in power at the plasmapause, a cold plasma boundary which is dynamic in time and space relative to L-shell. This study organizes wave power and propagation direction data with respect to distance from the plasmapause location to evaluate what role the location of the plasmapause may play in defining the spatial distribution of lower-band whistler-mode chorus wave power. It is found that characteristics of the statistical spatial distribution of equatorial lower-band whistler-mode chorus are determined by L-shell and are largely independent of plasmapause location. The primary physical importance of the plasmapause is to act as an Earthward boundary to lower-band whistler-mode chorus wave activity. This behavior is consistent with an equatorial lower-band whistler-mode chorus wave power spatial distribution that follows the L-shell organization of the particles driving wave growth.Item Van Allen Probes Observations of Second Harmonic Poloidal Standing Alfvén Waves(Wiley, 2018) Takahashi, Kazue; Oimatsu, Satoshi; Nosé, Masahito; Min, Kyungguk; Claudepierre, Seth G.; Chan, Anthony; Wygant, John; Kim, HyominLong-lasting second-harmonic poloidal standing Alfvén waves (P2 waves) were observed by the twin Van Allen Probes (Radiation Belt Storm Probes, or RBSP) spacecraft in the noon sector of the plasmasphere, when the spacecraft were close to the magnetic equator and had a small azimuthal separation. Oscillations of proton fluxes at the wave frequency (∼10 mHz) were also observed in the energy (W) range 50–300 keV. Using the unique RBSP orbital configuration, we determined the phase delay of magnetic field perturbations between the spacecraft with a 2nπ ambiguity. We then used finite gyroradius effects seen in the proton flux oscillations to remove the ambiguity and found that the waves were propagating westward with an azimuthal wave number (m) of ∼−200. The phase of the proton flux oscillations relative to the radial component of the wave magnetic field progresses with W, crossing 0 (northward moving protons) or 180° (southward moving protons) at W ∼ 120 keV. This feature is explained by drift-bounce resonance (mωd ∼ ωb) of ∼120 keV protons with the waves, where ωd and ωb are the proton drift and bounce frequencies. At lower energies, the proton phase space density ( ) exhibits a bump-on-tail structure with occurring in the 1–10 keV energy range. This is unstable and can excite P2 waves through bounce resonance (ω ∼ ωb), where ω is the wave frequency.