Browsing by Author "Castillo-Hair, Sebastian M."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item An Engineered B. subtilis Inducible Promoter System with over 10 000-Fold Dynamic Range(American Chemical Society, 2019) Castillo-Hair, Sebastian M.; Fujita, Masaya; Igoshin, Oleg A.; Tabor, Jeffrey J.; Center for Theoretical Biological PhysicsBacillus subtilis is the leading model Gram-positive bacterium, and a widely used chassis for industrial protein production. However, B. subtilis research is limited by a lack of inducible promoter systems with low leakiness and high dynamic range. Here, we engineer an inducible promoter system based on the T7 RNA Polymerase (T7 RNAP), the lactose repressor LacI, and the chimeric promoter PT7lac, integrated as a single copy in the B. subtilis genome. In the absence of IPTG, LacI strongly represses T7 RNAP and PT7lac and minimizes leakiness. Addition of IPTG derepresses PT7lac and simultaneously induces expression of T7RNAP, which results in very high output expression. Using green fluorescent and β-galactosidase reporter proteins, we estimate that this LacI-T7 system can regulate expression with a dynamic range of over 10 000, by far the largest reported for an inducible B. subtilis promoter system. Furthermore, LacI-T7 responds to similar IPTG concentrations and with similar kinetics as the widely used Phy-spank IPTG-inducible system, which we show has a dynamic range of at most 300 in a similar genetic context. Due to its superior performance, our LacI-T7 system should have broad applications in fundamental B. subtilis biology studies and biotechnology.Item An open-hardware platform for optogenetics and photobiology(Springer Nature, 2016) Gerhardt, Karl P.; Olson, Evan J.; Castillo-Hair, Sebastian M.; Hartsough, Lucas A.; Landry, Brian P.; Ekness, Felix; Yokoo, Rayka; Gomez, Eric J.; Ramakrishnan, Prabha; Suh, Junghae; Savage, David F.; Tabor, Jeffrey J.In optogenetics, researchers use light and genetically encoded photoreceptors to control biological processes with unmatched precision. However, outside of neuroscience, the impact of optogenetics has been limited by a lack of user-friendly, flexible, accessible hardware. Here, we engineer the Light Plate Apparatus (LPA), a device that can deliver two independent 310 to 1550 nm light signals to each well of a 24-well plate with intensity control over three orders of magnitude and millisecond resolution. Signals are programmed using an intuitive web tool named Iris. All components can be purchased for under $400 and the device can be assembled and calibrated by a non-expert in one day. We use the LPA to precisely control gene expression from blue, green, and red light responsive optogenetic tools in bacteria, yeast, and mammalian cells and simplify the entrainment of cyanobacterial circadian rhythm. The LPA dramatically reduces the entry barrier to optogenetics and photobiology experiments.Item FlowCal: A User-Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units(American Chemical Society, 2016) Castillo-Hair, Sebastian M.; Sexton, John T.; Landry, Brian P.; Olson, Evan J.; Igoshin, Oleg A.; Tabor, Jeffrey J.; Center for Theoretical Biological PhysicsFlow cytometry is widely used to measure gene expression and other molecular biological processes with single cell resolution via fluorescent probes. Flow cytometers output data in arbitrary units (a.u.) that vary with the probe, instrument, and settings. Arbitrary units can be converted to the calibrated unit molecules of equivalent fluorophore (MEF) using commercially available calibration particles. However, there is no convenient, nonproprietary tool available to perform this calibration. Consequently, most researchers report data in a.u., limiting interpretation. Here, we report a software tool named FlowCal to overcome current limitations. FlowCal can be run using an intuitive Microsoft Excel interface, or customizable Python scripts. The software accepts Flow Cytometry Standard (FCS) files as inputs and is compatible with different calibration particles, fluorescent probes, and cell types. Additionally, FlowCal automatically gates data, calculates common statistics, and produces publication quality plots. We validate FlowCal by calibrating a.u. measurements of E. coli expressing superfolder GFP (sfGFP) collected at 10 different detector sensitivity (gain) settings to a single MEF value. Additionally, we reduce day-to-day variability in replicate E. coli sfGFP expression measurements due to instrument drift by 33%, and calibrate S. cerevisiae Venus expression data to MEF units. Finally, we demonstrate a simple method for using FlowCal to calibrate fluorescence units across different cytometers. FlowCal should ease the quantitative analysis of flow cytometry data within and across laboratories and facilitate the adoption of standard fluorescence units in synthetic biology and beyond.Item How to train your microbe: methods for dynamically characterizing gene networks(Elsevier, 2015) Castillo-Hair, Sebastian M.; Igoshin, Oleg A.; Tabor, Jeffrey J.; Center for Theoretical Biological PhysicsGene networks regulate biological processes dynamically. However, researchers have largely relied upon static perturbations, such as growth media variations and gene knockouts, to elucidate gene network structure and function. Thus, much of the regulation on the path from DNA to phenotype remains poorly understood. Recent studies have utilized improved genetic tools, hardware, and computational control strategies to generate precise temporal perturbations outside and inside of live cells. These experiments have, in turn, provided new insights into the organizing principles of biology. Here, we introduce the major classes of dynamical perturbations that can be used to study gene networks, and discuss technologies available for creating them in a wide range of microbial pathways.Item Optogenetic control of Bacillus subtilis gene expression(Springer Nature, 2019) Castillo-Hair, Sebastian M.; Baerman, Elliot A.; Fujita, Masaya; Igoshin, Oleg A.; Tabor, Jeffrey J.The Gram-positive bacterium Bacillus subtilis exhibits complex spatial and temporal gene expression signals. Although optogenetic tools are ideal for studying such processes, none has been engineered for this organism. Here, we port a cyanobacterial light sensor pathway comprising the green/red photoreversible two-component system CcaSR, two metabolic enzymes for production of the chromophore phycocyanobilin (PCB), and an output promoter to control transcription of a gene of interest into B. subtilis. Following an initial non-functional design, we optimize expression of pathway genes, enhance PCB production via a translational fusion of the biosynthetic enzymes, engineer a strong chimeric output promoter, and increase dynamic range with a miniaturized photosensor kinase. Our final design exhibits over 70-fold activation and rapid response dynamics, making it well-suited to studying a wide range of gene regulatory processes. In addition, the synthetic biology methods we develop to port this pathway should make B. subtilis easier to engineer in the future.