Browsing by Author "Casillas, Gilberto"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item New insights into the properties and interactions of carbon chains as revealed by HRTEM and DFT analysis(Elsevier, 2014) Casillas, Gilberto; Mayoral, Alvaro; Liu, Mingjie; Ponce, Arturo; Artyukhov, Vasilii I.; Yakobson, Boris I.; Jose-Yacaman, MiguelAtomic carbon chains have raised interest for their possible applications as graphene interconnectors as the thinnest nanowires; however, they are hard to synthesize and subsequently to study. We present here a reproducible method to synthesize carbon chains in situ TEM. Moreover, we present a direct observation of the bond length alternation in a pure carbon chain by aberration corrected TEM. Also, cross bonding between two carbon chains, 5ᅠnm long, is observed experimentally and confirmed by DFT calculations. Finally, while free standing carbon chains were observed to be straight due to tensile loading, a carbon chain inside the walls of a carbon nanotube showed high flexibility.Item Rebar Graphene(American Chemical Society, 2014) Yan, Zheng; Peng, Zhiwei; Casillas, Gilberto; Lin, Jian; Xiang, Changsheng; Zhou, Haiqing; Yang, Yang; Ruan, Gedeng; Raji, Abdul-Rahman O.; Samuel, Errol L.G.; Hauge, Robert H.; Yacaman, Miguel Jose; Tour, James M.; Richard E. Smalley Institute for Nanoscale Science and TechnologyAs the cylindrical sp2-bonded carbon allotrope, carbon nanotubes (CNTs) have been widely used to reinforce bulk materials such as polymers, ceramics, and metals. However, both the concept demonstration and the fundamental understanding on how 1D CNTs reinforce atomically thin 2D layered materials, such as graphene, are still absent. Here, we demonstrate the successful synthesis of CNT-toughened graphene by simply annealing functionalized CNTs on Cu foils without needing to introduce extraneous carbon sources. The CNTs act as reinforcing bar (rebar), toughening the graphene through both π–π stacking domains and covalent bonding where the CNTs partially unzip and form a seamless 2D conjoined hybrid as revealed by aberration-corrected scanning transmission electron microscopy analysis. This is termed rebar graphene. Rebar graphene can be free-standing on water and transferred onto target substrates without needing a polymer-coating due to the rebar effects of the CNTs. The utility of rebar graphene sheets as flexible all-carbon transparent electrodes is demonstrated. The in-plane marriage of 1D nanotubes and 2D layered materials might herald an electrical and mechanical union that extends beyond carbon chemistry.Item Three-Dimensional Nanoporous Fe2O3/Fe3C-Graphene Heterogeneous Thin Films for Lithium-Ion Batteries(American Chemical Society, 2014) Yang, Yang; Fan, Xiujun; Casillas, Gilberto; Peng, Zhiwei; Ruan, Gedeng; Wang, Gunuk; Yacaman, Miguel Jose; Tour, James M.; Smalley Institute for Nanoscale Science and TechnologyThree-dimensional self-organized nanoporous thin films integrated into a heterogeneous Fe2O3/Fe3C-graphene structure were fabricated using chemical vapor deposition. Few-layer graphene coated on the nanoporous thin film was used as a conductive passivation layer, and Fe3C was introduced to improve capacity retention and stability of the nanoporous layer. A possible interfacial lithium storage effect was anticipated to provide additional charge storage in the electrode. These nanoporous layers, when used as an anode in lithium-ion batteries, deliver greatly enhanced cyclability and rate capacity compared with pristine Fe2O3: a specific capacity of 356 μAh cm–2 μm–1 (3560 mAh cm–3 or ∼1118 mAh g–1) obtained at a discharge current density of 50 μA cm–2 (∼0.17 C) with 88% retention after 100 cycles and 165 μAh cm–2 μm–1(1650 mAh cm–3 or ∼518 mAh g–1) obtained at a discharge current density of 1000 μA cm–2(∼6.6 C) for 1000 cycles were achieved. Meanwhile an energy density of 294 μWh cm–2 μm–1(2.94 Wh cm–3 or ∼924 Wh kg–1) and power density of 584 μW cm–2 μm–1 (5.84 W cm–3 or ∼1834 W kg–1) were also obtained, which may make these thin film anodes promising as a power supply for micro- or even nanosized portable electronic devices.