Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cantrell, Joel Wood"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Method of independent multipliers for minimizing unconstrained functions
    (1969) Cantrell, Joel Wood; Miele, Angelo
    A new accelerated gradient method for finding the minimum of a function f(x) whose variables are unconstrained is presented. The new algorithm can be stated where ax is the change in the position vector x, g(x) is the gradient of the function f(x), and a and fi are scalars chosen at each step so as to yield the greatest decrease in the function. The symbol Occ denotes the change in the position vector for the iteration preceding that under consideration. It is shown that, for a quadratic function, the present algorithm reduces to the Fletcher-Reeves algorithm; thus, quadratic convergence is assured. However, for a nonquadratic function, initial convergence of the present method is much faster than that of the Fletcher- Reeves method because of the extra degree of freedom available. For a test problem, the number of iterations was about 40-50% that of the Fletcher-Reeves method and the computing time about 60-75% that of the Fletcher-Reeves method, using comparable search techniques.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892