Browsing by Author "Byers, Chad P."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties(AAAS, 2015) Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications.Item Improved Analysis for Determining Diffusion Coefficients from Short, Single-Molecule Trajectories with Photoblinking(American Chemical Society, 2013) Shuang, Bo; Byers, Chad P.; Kisley, Lydia; Wang, Lin-Yung; Zhao, Julia; Morimura, Hiroyuki; Link, Stephan; Landes, Christy F.; Rice Quantum InstituteTwo Maximum Likelihood Estimation (MLE) methods were developed for optimizing the analysis of single-molecule trajectories that include phenomena such as experimental noise, photoblinking, photobleaching, and translation or rotation out of the collection plane. In particular,short, single-molecule trajectories with photoblinking were studied, and our method was compared with existing analytical techniques applied to simulated data. The optimal method for various experimental cases was established, and the optimized MLE method was applied to a real experimental system: single-molecule diffusion of fluorescent molecular machines known as nanocars.Item Photoluminescence of a Plasmonic Molecule(American Chemical Society, 2015) Huang, Da; Byers, Chad P.; Wang, Lin-Yung; Hoggard, Anneli; Hoener, Ben; Chang, Wei-Shun; Landes, Christy F.; Link, Stephan; Laboratory for NanophotonicsPhotoluminescent Au nanoparticles are appealing for biosensing and bioimaging applications because of their non-photobleaching and non-photoblinking emission. The mechanism of one-photon photoluminescence from plasmonic nanostructures is still heavily debated though. Here, we report on the one-photon photoluminescence of strongly coupled 50 nm Au nanosphere dimers, the simplest plasmonic molecule. We observe emission from coupled plasmonic modes as revealed by single-particle photoluminescence spectra in comparison to correlated dark-field scattering spectroscopy. The photoluminescence quantum yield of the dimers is found to be surprisingly similar to the constituent monomers, suggesting that the increased local electric field of the dimer plays a minor role, in contradiction to several proposed mechanisms. Aided by electromagnetic simulations of scattering and absorption spectra, we conclude that our data are instead consistent with a multistep mechanism that involves the emission due to radiative decay of surface plasmons generated from excited electron–hole pairs following interband absorption.Item Single-Particle Spectroscopy Reveals Heterogeneity in Electrochemical Tuning of the Localized Surface Plasmon(American Chemical Society, 2014) Byers, Chad P.; Hoener, Benjamin S.; Chang, Wei-Shun; Yorulmaz, Mustafa; Link, Stephan; Landes, Christy F.; Rice Quantum Institute; Laboratory for NanophotonicsA hyperspectral imaging method was developed that allowed the identification of heterogeneous plasmon response from 50 nm diameter gold colloidal particles on a conducting substrate in a transparent three-electrode spectroelectrochemical cell under non-Faradaic conditions. At cathodic potentials, we identified three distinct behaviors from different nanoparticles within the same sample: irreversible chemical reactions, reversible chemical reactions, and reversible charge density tuning. The irreversible reactions in particular would be difficult to discern in alternate methodologies. Additional heterogeneity was observed when single nanoparticles demonstrating reversible charge density tuning in the cathodic regime were measured dynamically in anodic potential ranges. Some nanoparticles that showed charge density tuning in the cathodic range also showed signs of an additional chemical tuning mechanism in the anodic range. The expected changes in nanoparticle free-electron density were modeled using a charge density-modified Drude dielectric function and Mie theory, a commonly used model in colloidal spectroelectrochemistry. Inconsistencies between experimental results and predictions of this common physical model were identified and highlighted. The broad range of responses on even a simple sample highlights the rich experimental and theoretical playgrounds that hyperspectral single-particle electrochemistry opens.