Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bursi, Luca"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Chiral Plasmonic Pinwheels Exhibit Orientation-Independent Linear Differential Scattering under Asymmetric Illumination
    (American Chemical Society, 2023) McCarthy, Lauren A.; Verma, Ojasvi; Naidu, Gopal Narmada; Bursi, Luca; Alabastri, Alessandro; Nordlander, Peter; Link, Stephan
    Plasmonic nanoantennas have considerably stronger polarization-dependent optical properties than their molecular counterparts, inspiring photonic platforms for enhancing molecular dichroism and providing fundamental insight into light-matter interactions. One such insight is that even achiral nanoparticles can yield strong optical activity when they are asymmetrically illuminated from a single oblique angle instead of evenly illuminated. This effect, called extrinsic chirality, results from the overall chirality of the experimental geometry and strongly depends on the orientation of the incident light. Although extrinsic chirality has been well-characterized, an analogous effect involving linear polarization sensitivity has not yet been discussed. In this study, we investigate the differential scattering of rotationally symmetric chiral plasmonic pinwheels when asymmetrically irradiated with linearly polarized light. Despite their high rotational symmetry, we observe substantial linear differential scattering that is maintained over all pinwheel orientations. We demonstrate that this orientation-independent linear differential scattering arises from the broken mirror and rotational symmetries of our overall experimental geometry. Our results underscore the necessity of considering both the rotational symmetry of the nanoantenna and the experimental setup, including illumination direction and angle, when performing plasmon-enhanced chiroptical characterizations. Our results demonstrate spectroscopic signatures of an effect analogous to extrinsic chirality for linear polarizations.
  • Loading...
    Thumbnail Image
    Item
    Ligand-Dependent Colloidal Stability Controls the Growth of Aluminum Nanocrystals
    (American Chemical Society, 2019) Clark, Benjamin D.; DeSantis, Christopher J.; Wu, Gang; Renard, David; McClain, Michael J.; Bursi, Luca; Tsai, Ah-Lim; Nordlander, Peter; Halas, Naomi J.; Laboratory for Nanophotonics
    The precise size- and shape-controlled synthesis of monodisperse Al nanocrystals remains an open challenge, limiting their utility for numerous applications that would take advantage of their size and shape-dependent optical properties. Here we pursue a molecular-level understanding of the formation of Al nanocrystals by titanium(IV) isopropoxide-catalyzed decomposition of AlH3ᅠin Lewis base solvents. As determined by electron paramagnetic resonance spectroscopy of intermediates, the reaction begins with the formation of Ti3+-AlH3ᅠcomplexes. Proton nuclear magnetic resonance spectroscopy indicates isopropoxy ligands are removed from Ti by Al, producing aluminum(III) isopropoxide and low-valent Ti3+ᅠcatalysts. These Ti3+ᅠspecies catalyze elimination of H2ᅠfrom AlH3ᅠinducing the polymerization of AlH3ᅠinto colloidally unstable low-valent aluminum hydride clusters. These clusters coalesce and grow while expelling H2ᅠto form colloidally stable Al nanocrystals. The colloidal stability of the Al nanocrystals and their size is determined by the molecular structure and density of coordinating atoms in the reaction, which is controlled by choice of solvent composition.
  • Loading...
    Thumbnail Image
    Item
    Polarized evanescent waves reveal trochoidal dichroism
    (National Academy of Sciences, 2020) McCarthy, Lauren A.; Smith, Kyle W.; Lan, Xiang; Jebeli, Seyyed Ali Hosseini; Bursi, Luca; Alabastri, Alessandro; Chang, Wei-Shun; Nordlander, Peter; Link, Stephan; Laboratory for Nanoscale Spectroscopic Imaging at Rice; Laboratory for Nanophotonics
    Matter’s sensitivity to light polarization is characterized by linear and circular polarization effects, corresponding to the system’s anisotropy and handedness, respectively. Recent investigations into the near-field properties of evanescent waves have revealed polarization states with out-of-phase transverse and longitudinal oscillations, resulting in trochoidal, or cartwheeling, field motion. Here, we demonstrate matter’s inherent sensitivity to the direction of the trochoidal field and name this property trochoidal dichroism. We observe trochoidal dichroism in the differential excitation of bonding and antibonding plasmon modes for a system composed of two coupled dipole scatterers. Trochoidal dichroism constitutes the observation of a geometric basis for polarization sensitivity that fundamentally differs from linear and circular dichroism. It could also be used to characterize molecular systems, such as certain light-harvesting antennas, with cartwheeling charge motion upon excitation.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892