Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Burer, Sam"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Solving Semidefinite Programs via Nonlinear Programming, Part II: Interior Point Methods for a Subclass of SDPs
    (1999-10) Burer, Sam; Monteiro, Renato; Zhang, Yin
    In Part I of this series of papers, we have introduced transformations which convert a large class of linear and nonlinear semidefinite programs (SDPs) into nonlinear optimization problems over "orthants" of the form (R^n)++ × R^N, where n is the size of the matrices involved in the problem and N is a nonnegative integer dependent upon the specific problem. In doing so, we have effectively reduced the number of variables and constraints. In this paper, we develop interior point methods for solving a subclass of the transformable linear SDP problems where the diagonal of a matrix variable is given. These new interior point methods have the advantage of working entirely within the space of the transformed problem while still maintaining close ties with the original SDP. Under very mild and reasonable assumptions, global convergence of these methods is proved.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892