Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Buras, Eric"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Multigrid Solver for Graph Laplacian Linear Systems on Power-Law Graphs
    (2016-05-17) Buras, Eric; Knepley, Matthew G
    The Laplacian matrix, L, of a graph, G, contains degree and edge information of a given network. Solving a Laplacian linear system Lx = b provides information about flow through the network, and in specific cases, how that information orders the nodes in the network. I propose a novel way to solve this linear system by first partitioning G into its maximum locally-connected subgraph and a small subgraph of the remaining so-called "teleportation" edges. I then apply optimal multigrid solves to the locally-connected subgraph, and linear algebra and a solve on the teleportation subgraph to solve the original linear system. I show results for this method on real-world graphs from the biological systems of the C. Elegans worm, Facebook friend networks, and the power grid of the Western United States.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892