Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bulik, Ireneusz W"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Electron correlation in extended systems via quantum embedding
    (2015-06-17) Bulik, Ireneusz W; Scuseria, Gustavo E.; Kolomeisky, Anatoly B; Hazzard, Kaden
    The pursuit of accurate and computationally efficient many-body tools capable of describing electron correlation is a major effort of the quantum chemistry community. The accuracy of chemical predictions strongly depends on the ability of the models to account for electron correlation. As the computational demand scales unfavourably with the size of the system, an efficient way of identifying relevant degrees of freedom may be an interesting avenue. In this thesis, a quantum embedding approach is employed to study lattice systems, polymers, and crystals. Numerical data shows the accuracy of the quantum embedding theory when combined with high-level many-body techniques. As the size of the units that are embedded grows, a more approximate and more computationally affordable tools are called for. In this thesis, we investigate the possibility of forming such methods in the framework of coupled cluster theory. We believe that the tools presented in this thesis could be important for accurate treatment of electron correlation in applications to realistic materials.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892