Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bulanadi, Ralph"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Interplay between Point and Extended Defects and Their Effects on Jerky Domain-Wall Motion in Ferroelectric Thin Films
    (American Physical Society, 2024) Bulanadi, Ralph; Cordero-Edwards, Kumara; Tückmantel, Philippe; Saremi, Sahar; Morpurgo, Giacomo; Zhang, Qi; Martin, Lane W.; Nagarajan, Valanoor; Paruch, Patrycja; Rice Advanced Materials Institute
    Defects have a significant influence on the polarization and electromechanical properties of ferroelectric materials. Statistically, they can be seen as random pinning centers acting on an elastic manifold, slowing domain-wall propagation and raising the energy required to switch polarization. Here we show that the “dressing” of defects can lead to unprecedented control of domain-wall dynamics. We engineer defects of two different dimensionalities in ferroelectric oxide thin films—point defects externally induced via He2+ bombardment, and extended quasi-one-dimensional 𝑎 domains formed in response to internal strains. The 𝑎 domains act as extended strong pinning sites (as expected) imposing highly localized directional constraints. Surprisingly, the induced point defects in the He2+ bombarded samples orient and align to impose further directional pinning, screening the effect of 𝑎 domains. This defect interplay produces more uniform and predictable domain-wall dynamics. Such engineered interactions between defects are crucial for advancements in ferroelectric devices.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892