Browsing by Author "Bui, Alexander A.T."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item An omnipresent diversity and variability in the chemical composition of atmospheric functionalized organic aerosol(Springer Nature, 2018) Ditto, Jenna C.; Barnes, Emily B.; Khare, Peeyush; Takeuchi, Masayuki; Joo, Taekyu; Bui, Alexander A.T.; Lee-Taylor, Julia; Eris, Gamze; Chen, Yunle; Aumont, Bernard; Jimenez, Jose L.; Ng, Nga Lee; Griffin, Robert J.; Gentner, Drew R.The atmospheric evolution of organic compounds encompasses many thousands of compounds with varying volatility, polarity, and water solubility. The molecular-level chemical composition of this mixture plays a major, yet uncertain, role in its transformations and impacts. Here we perform a non-targeted molecular-level intercomparison of functionalized organic aerosol from three diverse field sites and a chamber. Despite similar bulk composition, we report large molecular-level variability between multi-hour organic aerosol samples at each site, with 66 ± 13% of functionalized compounds differing between consecutive samples. Single precursor environmental laboratory chamber experiments and fully chemically-explicit modeling confirm this variability is due to changes in emitted precursors, chemical age, and/or oxidation conditions. These molecular-level results demonstrate greater compositional variability than is typically observed in less-speciated measurements, such as bulk elemental composition, which tend to show less daily variability. These observations should inform future field and laboratory studies, including assessments of the effects of variability on aerosol properties and ultimately the development of strategic organic aerosol parameterizations for air quality and climate models.Item Captive Aerosol Growth and Evolution (CAGE) chamber system to investigate particle growth due to secondary aerosol formation(Copernicus Publications, 2021) Sirmollo, Candice L.; Collins, Don R.; McCormick, Jordan M.; Milan, Cassandra F.; Erickson, Matthew H.; Flynn, James H.; Sheesley, Rebecca J.; Usenko, Sascha; Wallace, Henry W.; Bui, Alexander A.T.; Griffin, Robert J.; Tezak, Matthew; Kinahan, Sean M.; Santarpia, Joshua L.Environmental chambers are a commonly used tool for studying the production and processing of aerosols in the atmosphere. Most are located indoors and most are filled with air having prescribed concentrations of a small number of reactive gas species. Here we describe portable chambers that are used outdoors and filled with mostly ambient air. Each all-Teflon® 1 m3 Captive Aerosol Growth and Evolution (CAGE) chamber has a cylindrical shape that rotates along its horizontal axis. A gas-permeable membrane allows exchange of gas-phase species between the chamber and surrounding ambient air with an exchange time constant of approximately 0.5 h. The membrane is non-permeable to particles, and those that are injected into or nucleate in the chamber are exposed to the ambient-mirroring environment until being sampled or lost to the walls. The chamber and surrounding enclosure are made of materials that are highly transmitting across the solar ultraviolet and visible wavelength spectrum. Steps taken in the design and operation of the chambers to maximize particle lifetime resulted in averages of 6.0, 8.2, and 3.9 h for ∼ 0.06, ∼ 0.3, and ∼ 2.5 µm diameter particles, respectively. Two of the newly developed CAGE chamber systems were characterized using data acquired during a 2-month field study in 2016 in a forested area north of Houston, TX, USA. Estimations of measured and unmeasured gas-phase species and of secondary aerosol production in the chambers were made using a zero-dimensional model that treats chemical reactions in the chamber and the continuous exchange of gases with the surrounding air. Concentrations of NO, NO2, NOy, O3, and several organic compounds measured in the chamber were found to be in close agreement with those calculated from the model, with all having near 1.0 best fit slopes and high r2 values. The growth rates of particles in the chambers were quantified by tracking the narrow modes that resulted from injection of monodisperse particles and from occasional new particle formation bursts. Size distributions in the two chambers were measured intermittently 24 h d−1. A bimodal diel particle growth rate pattern was observed, with maxima of about 6 nm h−1 in the late morning and early evening and minima of less than 1 nm h−1 shortly before sunrise and sunset. A pattern change was observed for hourly averaged growth rates between late summer and early fall.Item FORest Canopy Atmosphere Transfer (FORCAsT) 2.0: model updates and evaluation with observations at a mixed forest site(European Geosciences Union, 2021) Wei, Dandan; Alwe, Hariprasad D.; Millet, Dylan B.; Bottorff, Brandon; Lew, Michelle; Stevens, Philip S.; Shutter, Joshua D.; Cox, Joshua L.; Keutsch, Frank N.; Shi, Qianwen; Kavassalis, Sarah C.; Murphy, Jennifer G.; Vasquez, Krystal T.; Allen, Hannah M.; Praske, Eric; Crounse, John D.; Wennberg, Paul O.; Shepson, Paul B.; Bui, Alexander A.T.; Wallace, Henry W.; Griffin, Robert J.; May, Nathaniel W.; Connor, Megan; Slade, Jonathan H.; Pratt, Kerri A.; Wood, Ezra C.; Rollings, Mathew; Deming, Benjamin L.; Anderson, Daniel C.; Steiner, Allison L.The FORCAsT (FORest Canopy Atmosphere Transfer) model version 1.0 is updated to FORCAsT 2.0 by implementing five major changes, including (1) a change to the operator splitting, separating chemistry from emission and dry deposition, which reduces the run time of the gas-phase chemistry by 70 % and produces a more realistic in-canopy profile for isoprene; (2) a modification of the eddy diffusivity parameterization to produce greater and more realistic vertical mixing in the boundary layer, which ameliorates the unrealistic simulated end-of-day peaks in isoprene under well-mixed conditions and improves daytime air temperature; (3) updates to dry deposition velocities with available measurements; (4) implementation of the Reduced Caltech Isoprene Mechanism (RCIM) to reflect the current knowledge of isoprene oxidation; and (5) extension of the aerosol module to include isoprene-derived secondary organic aerosol (iSOA) formation. Along with the operator splitting, modified vertical mixing, and dry deposition, RCIM improves the estimation of first-generation isoprene oxidation products (methyl vinyl ketone and methacrolein) and some second-generation products (such as isoprene epoxydiols). Inclusion of isoprene in the aerosol module in FORCAsT 2.0 leads to a 7 % mass yield of iSOA. The most important iSOA precursors are IEPOX and tetrafunctionals, which together account for >86 % of total iSOA. The iSOA formed from organic nitrates is more important in the canopy, accounting for 11 % of the total iSOA. The tetrafunctionals compose up to 23 % of the total iSOA formation, highlighting the importance of the fate (i.e., dry deposition and gas-phase chemistry) of later-generation isoprene oxidation products in estimating iSOA formation.Item Seasonal differences in formation processes of oxidized organic aerosol near Houston, TX(Copernicus Publications, 2019) Dai, Qili; Schulze, Benjamin C.; Bi, Xiaohui; Bui, Alexander A.T.; Guo, Fangzhou; Wallace, Henry W.; Sanchez, Nancy P.; Flynn, James H.; Lefer, Barry L.; Feng, Yinchang; Griffin, Robert J.Submicron aerosol was measured to the southwest of Houston, Texas, during winter and summer 2014 to investigate its seasonal variability. Data from a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) indicated that organic aerosol (OA) was the largest component of nonrefractory submicron particulate matter (NR-PM1) (on average, 38 % ± 13 % and 47 % ± 18 % of the NR-PM1 mass loading in winter and summer, respectively). Positive matrix factorization (PMF) analysis of the OA mass spectra demonstrated that two classes of oxygenated OA (less- and more-oxidized OOA, LO and MO) together dominated OA mass in summer (77 %) and accounted for 39 % of OA mass in winter. The fraction of LO-OOA (out of total OOA) is higher in summer (70 %) than in winter (44 %). Secondary aerosols (sulfate + nitrate + ammonium + OOA) accounted for ∼76 % and 88 % of NR-PM1 mass in winter and summer, respectively, indicating NR-PM1 mass was driven mostly by secondary aerosol formation regardless of the season. The mass loadings and diurnal patterns of these secondary aerosols show a clear winter–summer contrast. Organic nitrate (ON) concentrations were estimated using the NO+x ratio method, with contributions of 31 %–66 % and 9 %–17 % to OA during winter and summer, respectively. The estimated ON in summer strongly correlated with LO-OOA (r=0.73) and was enhanced at nighttime. The relative importance of aqueous-phase chemistry and photochemistry in processing OOA was investigated by examining the relationship of aerosol liquid water content (LWC) and the sum of ozone (O3) and nitrogen dioxide (NO2) (Ox = O3+NO2) with LO-OOA and MO-OOA. The processing mechanism of LO-OOA apparently was related to relative humidity (RH). In periods of RH < 80 %, aqueous-phase chemistry likely played an important role in the formation of wintertime LO-OOA, whereas photochemistry promoted the formation of summertime LO-OOA. For periods of high RH > 80 %, these effects were opposite those of low-RH periods. Both photochemistry and aqueous-phase processing appear to facilitate increases in MO-OOA concentration except during periods of high LWC, which is likely a result of wet removal during periods of light rain or a negative impact on its formation rate. The nighttime increases in MO-OOA during winter and summer were 0.013 and 0.01 µg MO-OOA per µg of LWC, respectively. The increase in LO-OOA was larger than that for MO-OOA, with increase rates of 0.033 and 0.055 µg LO-OOA per µg of LWC at night during winter and summer, respectively. On average, the mass concentration of LO-OOA in summer was elevated by nearly 1.2 µg m−3 for a ∼20 µg change in LWC, which was accompanied by a 40 ppb change in Ox.Item Source apportionment of fine particulate matter in Houston, Texas: insights to secondary organic aerosols(Copernicus Publications, 2018) Al-Naiema, Ibrahim M.; Hettiyadura, Anusha P.S.; Wallace, Henry W.; Sanchez, Nancy P.; Madler, Carter J.; Cevik, Basak Karakurt; Bui, Alexander A.T.; Kettler, Josh; Griffin, Robert J.; Stone, Elizabeth A.Online and offline measurements of ambient particulate matter (PM) near the urban and industrial Houston Ship Channel in Houston, Texas, USA, during May 2015 were utilized to characterize its chemical composition and to evaluate the relative contributions of primary, secondary, biogenic, and anthropogenic sources. Aerosol mass spectrometry (AMS) on nonrefractory PM1 (PM ≤ 1µm) indicated major contributions from sulfate (averaging 50% by mass), organic aerosol (OA, 40%), and ammonium (14%). Positive matrix factorization (PMF) of AMS data categorized OA on average as 22% hydrocarbon-like organic aerosol (HOA), 29% cooking-influenced less-oxidized oxygenated organic aerosol (CI-LO-OOA), and 48% more-oxidized oxygenated organic aerosol (MO-OOA), with the latter two sources indicative of secondary organic aerosol (SOA). Chemical analysis of PM2.5 (PM ≤ 2.5µm) filter samples agreed that organic matter (35%) and sulfate (21%) were the most abundant components. Organic speciation of PM2.5 organic carbon (OC) focused on molecular markers of primary sources and SOA tracers derived from biogenic and anthropogenic volatile organic compounds (VOCs). The sources of PM2.5 OC were estimated using molecular marker-based positive matric factorization (MM-PMF) and chemical mass balance (CMB) models. MM-PMF resolved nine factors that were identified as diesel engines (11.5%), gasoline engines (24.3%), nontailpipe vehicle emissions (11.1%), ship emissions (2.2%), cooking (1.0%), biomass burning (BB, 10.6%), isoprene SOA (11.0%), high-NOx anthropogenic SOA (6.6%), and low-NOx anthropogenic SOA (21.7%). Using available source profiles, CMB apportioned 41% of OC to primary fossil sources (gasoline engines, diesel engines, and ship emissions), 5% to BB, 15% to SOA (including 7.4% biogenic and 7.6% anthropogenic), and 39% to other sources that were not included in the model and are expected to be secondary. This study presents the first application of in situ AMS-PMF, MM-PMF, and CMB for OC source apportionment and the integration of these methods to evaluate the relative roles of biogenic, anthropogenic, and BB-SOA. The three source apportionment models agreed that ∼ 50% of OC is associated with primary emissions from fossil fuel use, particularly motor vehicles. Differences among the models reflect their ability to resolve sources based upon the input chemical measurements, with molecular marker-based methods providing greater source specificity and resolution for minor sources. By combining results from MM-PMF and CMB, BB was estimated to contribute 11% of OC, with 5% primary emissions and 6% BB-SOA. SOA was dominantly anthropogenic (28%) rather than biogenic (11%) or BB-derived. The three-model approach demonstrates significant contributions of anthropogenic SOA to fine PM. More broadly, the findings and methodologies presented herein can be used to advance local and regional understanding of anthropogenic contributions to SOA.Item Transport-driven aerosol differences above and below the canopy of a mixed deciduous forest(Copernicus Publications, 2021) Bui, Alexander A.T.; Wallace, Henry W.; Kavassalis, Sarah; Alwe, Hariprasad D.; Flynn, James H.; Erickson, Matt H.; Alvarez, Sergio; Millet, Dylan B.; Steiner, Allison L.; Griffin, Robert J.Exchanges of energy and mass between the surrounding air and plant surfaces occur below, within, and above a forest's vegetative canopy. The canopy also can lead to vertical gradients in light, trace gases, oxidant availability, turbulent mixing, and properties and concentrations of organic aerosol (OA). In this study, a high-resolution time-of-flight aerosol mass spectrometer was used to measure non-refractory submicron aerosol composition and concentration above (30 m) and below (6 m) a forest canopy in a mixed deciduous forest at the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport tower in northern Michigan during the summer of 2016. Three OA factors are resolved using positive matrix factorization: more-oxidized oxygenated organic aerosol (MO-OOA), isoprene-epoxydiol-derived organic aerosol (IEPOX-OA), and 91Fac (a factor characterized with a distinct fragment ion at m/z 91) from both the above- and the below-canopy inlets. MO-OOA was most strongly associated with long-range transport from more polluted regions to the south, while IEPOX-OA and 91Fac were associated with shorter-range transport and local oxidation chemistry. Overall vertical similarity in aerosol composition, degrees of oxidation, and diurnal profiles between the two inlets was observed throughout the campaign, which implies that rapid in-canopy transport of aerosols is efficient enough to cause relatively consistent vertical distributions of aerosols at this scale. However, four distinct vertical gradient episodes are identified for OA, with vertical concentration differences (above-canopy minus below-canopy concentrations) in total OA of up to 0.8 µg m−3, a value that is 42 % of the campaign average OA concentration of 1.9 µg m−3. The magnitude of these differences correlated with concurrent vertical differences in either sulfate aerosol or ozone. These differences are likely driven by a combination of long-range transport mechanisms, canopy-scale mixing, and local chemistry. These results emphasize the importance of including vertical and horizontal transport mechanisms when interpreting trace gas and aerosol data in forested environments.Item Urban core-downwind differences and relationships related to ozone production in a major urban area in Texas(Elsevier, 2021) Guo, Fangzhou; Bui, Alexander A.T.; Schulze, Benjamin C.; Yoon, Subin; Shrestha, Sujan; Wallace, Henry W.; Sakai, Yuta; Actkinson, Blake W.; Erickson, Matthew H.; Alvarez, Sergio; Sheesley, Rebecca; Usenko, Sascha; Flynn, James; Griffin, Robert J.San Antonio, the second-most populous city in Texas and the seventh-most populous city in the United States (US), has been designated a marginal non-attainment area by the US Environmental Protection Agency with respect to the 2015 ozone (O3) National Ambient Air Quality Standard. While stationary air quality monitoring sites are operated in the region by the Texas Commission on Environmental Quality (TCEQ), there are limited in situ field measurements for O3 and its precursors in the urban core. To better understand O3 dynamics in San Antonio, a suite of meteorological and gas instruments was deployed during May 2017. We incorporate field measurements from two campaign sites and one TCEQ stationary monitoring site into a zero-dimensional O3 model to characterize the local formation and destruction rates of O3, hydroxyl radical (OH) reactivity of volatile organic compounds (VOCs), O3 production efficiency, and O3 formation regime in the urban core and directly downwind of San Antonio. Upwind/downwind differences indicate the importance of photochemical processing of VOCs with carbon-carbon double bonds. San Antonio was mostly in a nitrogen oxide (NOX)-sensitive regime throughout the daytime during the campaign period, with O3 formation peaking at noon in the city center and early afternoon at the downwind region. Formaldehyde (HCHO), isoprene, and alkenes dominated VOC reactivity, with alkenes and isoprene from San Antonio's core (upwind) likely contributing to the downwind formation of HCHO and enhancing its OH reactivity. However, their direct impact on downwind O3 production was not observed. Model results suggest further strengthening NOX emission controls to decrease O3 formation in San Antonio.