Browsing by Author "Brown, Lisa V."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Cross antennas for surface-enhanced infrared absorption (SEIRA) spectroscopy of chemical moieties(2016-06-21) Brown, Lisa V.; Zhao, Ke; Halas, Nancy J.; Nordlander, Peter J.; Rice University; United States Patent and Trademark OfficeA device for Surface Enhanced Infrared Absorption (SEIRA) that includes at least one pair of metallic antennas deposited on a substrate, wherein the pair of metallic antennas are collinear. The length, width, and height of the metallic antenna determines an infrared absorption of the pair of metallic antennas. The device also includes a gap located between the pair of metallic antennas. A chemical moiety is disposed on at least a portion of the metallic antennas such that the infrared absorption of the chemical moiety is enhanced by the at least one pair of metallic antennas.Item Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells(Future Medicine, 2014) Chen, Wenxue; Ayala-Orozco, Ciceron; Biswal, Nrusingh C.; Perez-Torres, Carlos; Bartels, Marc; Bardhan, Rizia; Stinnet, Gary; Liu, Xian-De; Ji, Baoan; Deorukhkar, Amit; Brown, Lisa V.; Guha, Sushovan; Pautler, Robia G.; Krishnan, Sunil; Halas, Naomi J.; Joshi, AmitAim: We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase-associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. Materials & methods: Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the near-infrared (NIR) dye indocyanine green, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. Results: Anti-NGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2-weighted MRI with higher tumor contrast than can be obtained using long-circulating, but nontargeted, PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. Conclusion: TGNS with embedded NIR and magnetic resonance contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy.