Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Brown, Barry W."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    An unconditional test for the single-sample binomial
    (2004) Brott, Evan John; Brown, Barry W.
    An unconditional test is presented for a single-sample Binomial experiment with random sample size. The test is shown to be uniformly more powerful than the standard Binomial Test, and is shown through several simulations to produce more accurate p-values as well. The primary downside of the test lies in the fact that it can be anticonservative (that is, produce too small a p-value), although it may be preferable to the ultra-conservatism of the standard test which treats the sample size as being fixed.
  • Loading...
    Thumbnail Image
    Item
    Multi-stage designs in dose-response studies
    (1993) Spears, Floyd Martin; Brown, Barry W.
    Designs are explored that minimize the asymptotic variance of a single parameter in a dose-response study designed to estimate this parameter. An example is a design to find the dose producing 50% response. Uncertainty of parameter values of the dose-response curve is represented as a normal prior distribution. Because the integration of the criterion over the prior distribution is analytically untractable, numeric methods are used to find good designs. The extension to multi-stage experiments is straightforward. The normal prior distribution coupled with the asymptotically normal likelihood yields a normal posterior distribution that is used to optimize the succeeding stage. Simulation results suggest that the asymptotic methods are a good reflection of small sample properties of the designs, even with modest-sized experiments. If initial uncertainty of the parameters is large, two-stage designs can produce accuracy that would require a sample size fifty percent greater with a single-stage design.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892