Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bradshaw, S.J."

Now showing 1 - 10 of 10
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Are chromospheric nanoflares a primary source of coronal plasma?
    (IOP Publishing, 2014) Klimchuk, J.A.; Bradshaw, S.J.
    It has been suggested that the hot plasma of the solar corona comes primarily from impulsive heating events, or nanoflares, that occur in the lower atmosphere, either in the upper part of the ordinary chromosphere or at the tips of type II spicules. We test this idea with a series of hydrodynamic simulations. We find that synthetic Fe XII (195) and Fe XIV (274) line profiles generated from the simulations disagree dramatically with actual observations. The integrated line intensities are much too faint; the blueshifts are much too fast; the blue-red asymmetries are much too large; and the emission is confined to low altitudes. We conclude that chromospheric nanoflares are not a primary source of hot coronal plasma. Such events may play an important role in producing the chromosphere and powering its intense radiation, but they do not, in general, raise the temperature of the plasma to coronal values. Those cases where coronal temperatures are reached must be relatively uncommon. The observed profiles of Fe XII and Fe XIV come primarily from plasma that is heated in the corona itself, either by coronal nanoflares or a quasi-steady coronal heating process. Chromospheric nanoflares might play a role in generating waves that provide this coronal heating.
  • Loading...
    Thumbnail Image
    Item
    Diagnosing the Time Dependence of Active Region Core Heating from the Emission Measure. II. Nanoflare Trains
    (The American Astronomical Society, 2013) Reep, J.W.; Bradshaw, S.J.; Klimchuk, J.A.
    The time dependence of heating in solar active regions can be studied by analyzing the slope of the emission measure distribution coolward of the peak. In a previous study we showed that low-frequency heating can account for 0% to 77% of active region core emission measures.We now turn our attention to heating by a finite succession of impulsive events for which the timescale between events on a single magnetic strand is shorter than the cooling timescale.We refer to this scenario as a “nanoflare train” and explore a parameter space of heating and coronal loop properties with a hydrodynamic model. Our conclusions are (1) nanoflare trains are consistent with 86% to 100% of observed active region cores when uncertainties in the atomic data are properly accounted for; (2) steeper slopes are found for larger values of the ratio of the train duration ΔH to the post-train cooling and draining timescale ΔC, where ΔH depends on the number of heating events, the event duration and the time interval between successive events (τC); (3) τC may be diagnosed from the width of the hot component of the emission measure provided that the temperature bins are much smaller than 0.1 dex; (4) the slope of the emission measure alone is not sufficient to provide information about any timescale associated with heating—the length and density of the heated structure must be measured for ΔH to be uniquely extracted from the ratio ΔH /ΔC.
  • Loading...
    Thumbnail Image
    Item
    DIAGNOSING THE TIME-DEPENDENCE OF ACTIVE REGION CORE HEATING FROM THE EMISSION MEASURE. I. LOW-FREQUENCY NANOFLARES
    (The American Astronomical Society, 2012) Bradshaw, S.J.; Klimchuk, J.A.; Reep, J.W.
    Observational measurements of active region emission measures contain clues to the time dependence of the underlying heating mechanism. A strongly nonlinear scaling of the emission measure with temperature indicates a large amount of hot plasma relative to warm plasma. A weakly nonlinear (or linear) scaling of the emission measure indicates a relatively large amount of warm plasma, suggesting that the hot active region plasma is allowed to cool and so the heating is impulsive with a long repeat time. This case is called low-frequency nanoflare heating, and we investigate its feasibility as an active region heating scenario here.We explore a parameter space of heating and coronal loop properties with a hydrodynamic model. For each model run, we calculate the slope α of the emission measure distribution EM(T ) ∝ T α. Our conclusions are: (1) low-frequency nanoflare heating is consistent with about 36% of observed active region cores when uncertainties in the atomic data are not accounted for; (2) proper consideration of uncertainties yields a range in which as many as 77% of observed active regions are consistent with low-frequency nanoflare heating and as few as zero; (3) low-frequency nanoflare heating cannot explain observed slopes greater than 3; (4) the upper limit to the volumetric energy release is in the region of 50 erg cm−3 to avoid unphysical magnetic field strengths; (5) the heating timescale may be short for loops of total length less than 40Mm to be consistent with the observed range of slopes; (6) predicted slopes are consistently steeper for longer loops.
  • Loading...
    Thumbnail Image
    Item
    Emergence of kinetic behavior in streaming ultracold neutral plasmas
    (AIP Publishing LLC, 2015) McQuillen, P.; Castro, J.; Bradshaw, S.J.; Killian, T.C.
    We create streaming ultracold neutral plasmas by tailoring the photoionizing laser beam that creates the plasma. By varying the electron temperature, we control the relative velocity of the streaming populations, and, in conjunction with variation of the plasma density, this controls the ion collisionality of the colliding streams. Laser-induced fluorescence is used to map the spatially resolved density and velocity distribution function for the ions. We identify the lack of local thermal equilibrium and distinct populations of interpenetrating, counter-streaming ions as signatures of kinetic behavior. Experimental data are compared with results from a one-dimensional, two-fluid numerical simulation.
  • Loading...
    Thumbnail Image
    Item
    ENTHALPY-BASED THERMAL EVOLUTION OF LOOPS. II. IMPROVEMENTS TO THE MODEL
    (The American Astronomical Society, 2012) Cargill, P.J.; Bradshaw, S.J.; Klimchuk, J.A.
    This paper develops the zero-dimensional (0D) hydrodynamic coronal loop model モEnthalpy-based Thermal Evolution of Loopsヤ (EBTEL) proposed by Klimchuk et al., which studies the plasma response to evolving coronal heating, especially impulsive heating events. The basis of EBTEL is the modeling of mass exchange between the corona and transition region (TR) and chromosphere in response to heating variations, with the key parameter being the ratio of the TR to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. The new features in EBTEL are important for accurate tracking of, in particular, the density. The 0D results are compared to a 1D hydro code (Hydrad) with generally good agreement. EBTEL is suitable for general use as a tool for (1) quick-look results of loop evolution in response to a given heating function, (2) extensive parameter surveys, and (3) situations where the modeling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.
  • Loading...
    Thumbnail Image
    Item
    Forward Modelling of a Brightening Observed by AIA
    (Springer, 2015) Price, D.J.; Taroyan, Y.; Innes, D.E.; Bradshaw, S.J.
    A comprehensive understanding of the different transient events is necessary for any eventual solution of the coronal heating problem. We present a cold loop whose heating caused a short-lived small-scale brightening that was observed by AIA. The loop was simulated using an adaptive hydrodynamic radiation code that considers the ions to be in a state of non-equilibrium. Forward modelling was used to create synthetic AIA intensity plots, which were tested against the observational data to confirm the simulated properties of the event. The hydrodynamic properties of the loop were determined. We found that the energy released by the heating event is within the canonical energy range of a nanoflare.
  • Loading...
    Thumbnail Image
    Item
    Ion holes in the hydrodynamic regime in ultracold neutral plasmas
    (American Institute of Physics, 2013) McQuillen, P.; Castro, J.; Strickler, T.; Bradshaw, S.J.; Killian, T.C.
    We describe the creation of localized density perturbations, or ion holes, in an ultracold neutral plasma in the hydrodynamic regime, and show that the holes propagate at the local ion acoustic wave speed. We also observe the process of hole splitting, which results from the formation of a density depletion initially at rest in the plasma. One-dimensional, two-fluid hydrodynamic simulations describe the results well. Measurements of the ion velocity distribution also show the effects of the ion hole and confirm the hydrodynamic conditions in the plasma.
  • Loading...
    Thumbnail Image
    Item
    Laser-induced-fluorescence imaging of a spin-polarized ultracold neutral plasma in a magnetic field
    (American Physical Society, 2022) Gorman, G.M.; Warrens,M.K.; Bradshaw, S.J.; Killian, T.C.
    We report Doppler-sensitive laser-induced-fluorescence (LIF) imaging of an ultracold neutral plasma in a magnetic field. Local values of ion density, hydrodynamic fluid velocity, temperature, and spin polarization are obtained using a fluorescence model based on velocity-resolved rate equations (REs) including the transfer of ions between states due to laser coupling and spontaneous emission. The RE approach captures optical pumping of ions into states that are not driven by the LIF excitation laser, and this is validated with experimental data. Combined molecular-dynamics and quantum-trajectories simulations verify that velocity-changing collisions have a negligible impact on the state population evolution for typical experimental conditions. Relative intensities of Zeeman components of the LIF spectra provide clear evidence that the ions are electron-spin-polarized when created by photoionization of magnetically trapped 88Sr atoms. This probe opens many possibilities for studying thermal transport and the equilibration of neutral plasmas in overlapping regimes of strong coupling and magnetization.
  • Loading...
    Thumbnail Image
    Item
    Static and dynamic solar coronal loops with cross-sectional area variations
    (Oxford University Press, 2022) Cargill, P.J.; Bradshaw, S.J.; Klimchuk, J.A.; Barnes, W.T.
    The Enthalpy Based Thermal Evolution of Loops approximate model for static and dynamic coronal loops is developed to include the effect of a loop cross-sectional area which increases from the base of the transition region (TR) to the corona. The TR is defined as the part of a loop between the top of the chromosphere and the location where thermal conduction changes from an energy loss to an energy gain. There are significant differences from constant area loops due to the manner in which the reduced volume of the TR responds to conductive and enthalpy fluxes from the corona. For static loops with modest area variation the standard picture of loop energy balance is retained, with the corona and TR being primarily a balance between heating and conductive losses in the corona, and downward conduction and radiation to space in the TR. As the area at the loop apex increases, the TR becomes thicker and the density in TR and corona larger. For large apex areas, the coronal energy balance changes to one primarily between heating and radiation, with conduction playing an increasingly unimportant role, and the TR thickness becoming a significant fraction of the loop length. Approximate scaling laws are derived that give agreement with full numerical solutions for the density, but not the temperature. For non-uniform areas, dynamic loops have a higher peak temperature and are denser in the radiative cooling phase by of order 50?per?cent than the constant area case for the examples considered. They also show a final rapid cooling and draining once the temperature approaches 1?MK. Although the magnitude of the emission measure will be enhanced in the radiative phase, there is little change in the important observational diagnostic of its temperature dependence.
  • Loading...
    Thumbnail Image
    Item
    Understanding Heating in Active Region Cores through Machine Learning. II. Classifying Observations
    (IOP Publishing, 2021) Barnes, W.T.; Bradshaw, S.J.; Viall, N.M.
    Constraining the frequency of energy deposition in magnetically closed active region cores requires sophisticated hydrodynamic simulations of the coronal plasma and detailed forward modeling of the optically thin line-of-sight integrated emission. However, understanding which set of model inputs best matches a set of observations is complicated by the need for any proposed heating model to simultaneously satisfy multiple observable constraints. In this paper, we train a random forest classification model on a set of forward-modeled observable quantities, namely the emission measure slope, the peak temperature of the emission measure distribution, and the time lag and maximum cross-correlation between multiple pairs of AIA channels. We then use our trained model to classify the heating frequency in every pixel of active region NOAA 1158 using the observed emission measure slopes, peak temperatures, time lags, and maximum cross-correlations, and are able to map the heating frequency across the entire active region. We find that high-frequency heating dominates in the inner core of the active region while intermediate-frequency dominates closer to the periphery of the active region. Additionally, we assess the importance of each observed quantity in our trained classification model and find that the emission measure slope is the dominant feature in deciding with which heating frequency a given pixel is most consistent. The technique presented here offers a very promising and widely applicable method for assessing observations in terms of detailed forward models given an arbitrary number of observable constraints.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892