Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Boutz, Daniel R."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Directed evolution of an orthogonal transcription engine for programmable gene expression in eukaryotes
    (Elsevier, 2025) Kar, Shaunak; Gardner, Elizabeth C.; Javanmardi, Kamyab; Boutz, Daniel R.; Shroff, Raghav; Horton, Andrew P.; Segall-Shapiro, Thomas H.; Ellington, Andrew D.; Gollihar, Jimmy; Bioengineering
    T7 RNA polymerase (RNAP) has enabled orthogonal control of gene expression and recombinant protein production across diverse prokaryotic host chassis organisms for decades. However, the absence of 5′ methyl guanosine caps on T7 RNAP-derived transcripts has severely limited its utility and widespread adoption in eukaryotic systems. To address this shortcoming, we evolved a fusion enzyme combining T7 RNAP with the single subunit capping enzyme from African swine fever virus using Saccharomyces cerevisiae. We isolated highly active variants of this fusion enzyme, which exhibited roughly two orders of magnitude higher protein expression compared to the wild-type enzyme. We demonstrate the programmable control of gene expression using T7 RNAP-based genetic circuits in yeast and validate enhanced performance of these engineered variants in mammalian cells. This study presents a robust, orthogonal gene regulatory system applicable across diverse eukaryotic hosts, enhancing the versatility and efficiency of synthetic biology applications.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892