Browsing by Author "Bitner, Brittany R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Antioxidant Carbon Particles Improve Cerebrovascular Dysfunction Following Traumatic Brain Injury(American Chemical Society, 2012) Bitner, Brittany R.; Marcano, Daniela C.; Berlin, Jacob M.; Fabian, Roderic H.; Cherian, Leela; Culver, James C.; Dickinson, Mary E.; Robertson, Claudia S.; Pautler, Robia G.; Kent, Thomas A.; Tour, James M.; Smalley Institute for Nanoscale Science and TechnologyInjury to the neurovasculature is a feature of brain injury and must be addressed to maximize opportunity for improvement. Cerebrovascular dysfunction, manifested by reduction in cerebral blood flow (CBF), is a key factor that worsens outcome after traumatic brain injury (TBI), most notably under conditions of hypotension. We report here that a new class of antioxidants, poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs), which are nontoxic carbon particles, rapidly restore CBF in a mild TBI/hypotension/resuscitation rat model when administered during resuscitation--a clinically relevant time point. Along with restoration of CBF, there is a concomitant normalization of superoxide and nitric oxide levels. Given the role of poor CBF in determining outcome, this finding is of major importance for improving patient health under clinically relevant conditions during resuscitative care, and it has direct implications for the current TBI/hypotension war-fighter victims in the Afghanistan and Middle East theaters. The results also have relevancy in other related acute circumstances such as stroke and organ transplantation.Item Hydrophilic carbon clusters as therapeutic, high-capacity antioxidants(Elsevier, 2014) Samuel, Errol L.G.; Duong, MyLinh T.; Bitner, Brittany R.; Marcano, Daniela C.; Tour, James M.; Kent, Thomas A.; Smalley Institute for Nanoscale Science and TechnologyOxidative stress reflects an excessive accumulation of reactive oxygen species (ROS) and is a hallmark of several acute and chronic human pathologies. Although many antioxidants have been investigated, most have demonstrated poor efficacy in clinical trials. Here we discuss the limitations of current antioxidants and describe a new class of nanoparticle antioxidants, poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs). PEG-HCCs show high capacity to annihilate ROS such as superoxide (O2(•-)) and the hydroxyl (HO(•)) radical, show no reactivity toward the nitric oxide radical (NO(•)), and can be functionalized with targeting moieties without loss of activity. Given these properties, we propose that PEG-HCCs offer an exciting new area of study for the treatment of numerous ROS-induced human pathologies..